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Context

• Modelling of the failure process of one repairable system.

• Only corrective maintenances, which may be imperfect.

Many imperfect maintenance models have been proposed.

To analyze a dataset, it is necessary to check whether these models are
adapted or not =⇒ Goodness-of-fit (GoF) tests

GoF tests are well known for simple models AGAN and ABAO.

Very few work exist for testing the fit of imperfect maintenance models.

Aim of this work
Develop a methodology for testing the fit of any imperfect maintenance
model.
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Notations and assumptions

− T1,T2, . . . ,Tn the n first failure times of the system, with T0 = 0.

− Repair duration is considered negligible or not taken into account.

− N = (Nt)t≥0 the failure counting process, characterized by its
intensity

λt = lim
∆t→0

1

∆t
P (Nt+∆t − Nt− = 1 | Ht−) , t ≥ 0,

where Ht− is the past of the process just before t.

An imperfect maintenance model is composed of two parts:

− The initial intensity expresses the intrinsic wear before the first
maintenance.

− A model for the effect of maintenances.
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Initial intensity

h(t) is the failure rate of the first failure time.

Usual models :

• Power Law Process (PLP) : h(t) = abtb−1, t ≥ 0, a, b > 0.

− b > 1: the system wears.
− b = 1: the system is stable.
− b < 1: the system improves.

• Log Linear Process (LLP): h(t) = exp(a + bt), t > 0, a, b ∈ R.
− b > 0: the system wears.
− b = 0: the system is stable.
− b < 0: the system improves.

In this presentation, we consider wearing systems.
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Maintenance effect

− As Good As New (perfect maintenance):
N is a renewal process and

λt = h
(
t − TNt−

)
, t ≥ 0

− As Bad As Old (minimal maintenance):
N is a Non-Homogeneous Poisson Process (NHPP) and

λt = h(t), t ≥ 0

− Imperfect maintenance: between ABAO and AGAN.
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Some imperfect maintenance models

Brown-Proschan (BP) model (Brown & Proschan, 1983)

Let p ∈ [0, 1]. Each maintenance is:

− AGAN with probability p,

− ABAO with probability 1− p.

The intensity is

λt = h

t − TNt−
+

Nt−∑
j=1

Nt−∏
k=j

(1− Bk )

 (Tj − Tj−1)

 , t ≥ 0.
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Quasi-renewal (QR) model (Wang & Pham, 1996)

Let (Yi )i=1,...,n be a sequence of i.i.d. random variables and q > 0 a
parameter characterizing the repair effect. Then, under the QR model,

Ti − Ti−1 = qi−1Yi , i ∈ N∗.

The times between two successive failures are independent and the
counting process N is a geometric process (Lam, 1988).

The intensity is

λt = q−Nt−h
(
q−Nt−

(
t − TNt−

))
, t ≥ 0.

− q = 1: AGAN maintenance.

− q ∈]0, 1[: stochastically decreasing inter-failure times.

− q > 1: system improvement.

=⇒ Geometrical growth of the inter-failure times is a strong condition.
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Extended Geometric Process (EGP) (Bordes & Mercier, 2013)

Let (Yi )i=1,...,n be a sequence of i.i.d. random variables and q > 0 a
parameter characterizing the repair effect. Then, under the model,

Ti − Ti−1 = qbiYi ,

where (bi )i∈N∗ is a non-decreasing sequence of non-negative real
numbers such that

• b1 = 0

• limi→∞ bi =∞.

For instance, for i ∈ N∗,
• bi = i − 1 (quasi-renewal case),

• bi =
√
i − 1,

• bi = log(i).
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Virtual age models (Kijima, 1989)

Let (Ai )i=1,...,n be a sequence of positive random variables.

Model assumption : After the i th maintenance, the system behaves like a
new system which has not failed until Ai .

=⇒ The variables Ai are called effective ages.

The intensity is

λt = h
(
ANt−

+ t − TNt−

)
, t ≥ 0.

A virtual age model is defined by a particular expression of the
effective ages.
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ARA∞ model (Doyen & Gaudoin, 2004) or Kijima type II

The repair is supposed to reduce the effective age by a factor ρ ≤ 1:

∀i ∈ N∗, Ai = (1− ρ)(Ai−1 + Ti − Ti−1),

where Ai−1 + Ti − Ti−1 is the age of the system just before the i th

maintenance and A0 = 0.

The intensity is λt = h
(
t − ρ

∑Nt−−1
j=0 (1− ρ)jTNt−−j

)
, t ≥ 0.

ARA1 model (Doyen & Gaudoin, 2004) or Kijima type I

The supplement of effective age since the last failure is reduced by a
factor ρ ≤ 1 :

∀i ∈ N∗, Ai = Ai−1 + (1− ρ)(Ti − Ti−1),

and A0 = 0.

The intensity is λt = h
(
t − ρTNt−

)
, t ≥ 0.
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Usually, parameter estimation is done by likelihood maximization.

=⇒ Assessment of both the intrinsinc ageing and the repair effect.

Likelihood function:

Ln =

(
n∏

i=1

λTi

)
exp

(
−
∫ Tn

0

λtdt

)
.
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Construction of a goodness-of-fit test
Let C =

{
λ(θ), θ ∈ Θ ⊂ Rd

}
be an imperfect maintenance model, where

θ is the model parameter.

Is C a relevant model for the observed data T1, . . . ,Tn ?

=⇒ Goodness-of-fit test: statistical test of

H0 : “λ ∈ C′′ vs H1 : “λ /∈ C′′

Construction of a GoF test
1. Find a statistic expressing the gap between the data and the model.

2. Determine the distribution of the statistic under H0.

3. Compare the observed statistic with a quantile of this distribution.

We propose 2 families of GoF tests, based on:

− Martingale residuals.

− Probability integral transforms.
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Martingale

Let Λ = (Λt)t≥0 be the cumulative intensity of the failure process N, with

Λ(t) =

∫ t

0

λsds, t ≥ 0.

Definition

The process M = (Mt)t≥0 defined by M = N − Λ is a zero mean
martingale.

N is close to Λ in the sense that the expectation of their difference is null.
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Martingale residuals

In our setting, the intensity has a parametric form λ(θ) with θ ∈ Θ ⊂ Rp.
Let us denote

• Λ(θ) = (Λt(θ))t≥0 the cumulative intensity of the process, where

Λt(θ) =

∫ t

0

λs(θ)ds, t ≥ 0.

• θ̂ the maximum likelihood estimator of θ.

Definition

The martingale residuals are the random variables (M̂i )i=1,...,n such that

M̂i = N(Ti )− ΛTi (θ̂) = i − ΛTi (θ̂).

When estimating θ, the martingale property is lost but N is still expected
to be close to Λ(θ̂).
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Example: ARA∞-PLP model

• initial intensity PLP: h(t) = abtb−1.

• maintenance effect ARA∞: Ai = (1− ρ)(Ai−1 + Ti − Ti−1).

Cumulative intensity:

For t ≥ 0,

Λt (a, b, ρ) = a

Nt +1∑
i=1


Ti − ρ

i−2∑
j=0

(1− ρ)j Ti−j−1

b

−

Ti−1 − ρ
i−2∑
j=0

(1− ρ)j Ti−j−1

b
 ,

where we set TNt +1 = t.

3 parameters: a > 0, b > 1 and ρ ∈ [0, 1].
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Simulated dataset with n = 30 failure times from the ARA∞-PLP model,
with a = 0.05, b = 2.5 and ρ = 0.1.

The estimated cumulative intensity Λ(θ̂) is as close to the counting
process as the real cumulative intensity Λ(θ).
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Test statistics

We consider 3 statistics which measure discrepancies between N and
Λ(θ̂).

• Kolmogorov-Smirnov (KS):

KSm(θ̂) = sup
i=1,...,n

∣∣∣M̂i

∣∣∣ = sup
i=1,...,n

∣∣∣i − ΛTi (θ̂)
∣∣∣ .

• Cramér-von Mises (CvM):

CvMm(θ̂) =

∫ Tn

0

(
Nt − Λt(θ̂)

)2

dΛt(θ̂).

One can show that:

CvMm(θ̂) = −1

3

n∑
i=1

{(
i − 1− ΛTi (θ̂)

)3

−
(
i − 1− ΛTi−1 (θ̂)

)3
}
.
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• Anderson-Darling (AD):

ADm(θ̂) =

∫ Tn

0

(
Nt − Λt(θ̂)

)2

Λt(θ̂)
(
n + 1− Λt(θ̂)

)dΛt(θ̂).

One can show that:

ADm(θ̂) =
1

n + 1

n∑
i=2

{
(i − 1)2 log

(
ΛTi

(θ̂)

ΛTi−1
(θ̂)

)
− (n + 2− i)2 log

(
n + 1− ΛTi

(θ̂)

n + 1− ΛTi−1
(θ̂)

)}

+ (n + 1) log

(
1−

ΛT1
(θ̂)

n + 1

)
− n.
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Probability Integral Transform

Under H0 : “λ ∈ C”, for i = 0, . . . , n − 1, the random variables

ΛTi+1 (θ)− ΛTi (θ)

are i.i.d. and follow the E(1) distribution.

−→ Transformation into uniform variables.

Definition

For i = 0, . . . , n− 1, let S(· | Ti ; θ) denote the reliability function of the
inter-failure time Ti+1 − Ti conditionally to Ti = (T1,T2, . . . ,Ti ):

S(s | Ti ; θ) :=P(Ti+1 − Ti > s | Ti ; θ)

= exp (−ΛTi +s(θ) + ΛTi (θ)) , for s ≥ 0.
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Definition - conditional Probability Integral Transform (PIT)

When applying this reliability function to the observed inter-failure times,
we define the variables

Ui (θ) = S(Ti+1 − Ti | Ti ; θ), i = 0, . . . , n − 1.

This transform of the variables Ti+1 − Ti is also known as Rosenblatt’s
transform.

Under H0, the Ui ’s are i.i.d. with standard uniform distribution.

In practice, θ is estimated and we will test the uniformity of
U0(θ̂), . . . ,Un−1(θ̂).

Parametric bootstrap goodness-of-fit tests for imperfect maintenance models Cécile Chauvel 24/47



Imperfect maintenance models Parametric bootstrap goodness-of-fit tests Simulation study Applications Discussion References

Test statistics based on the Ui

Let Fn,S be the empirical c.d.f. of the random variables Ui (θ̂) and

U(0)(θ̂) ≤ U(1)(θ̂) ≤ · · · ≤ U(n−1)(θ̂).

We propose 3 test statistics:

• Kolmogorov-Smirnov (KS)

KSu(θ̂) =
√
n sup

x∈[0,1]

|Fn,S (x)− x |

=
√
nmax

{
max

i=1,...,n

(
i

n
− U(i−1)(θ̂)

)
, max

i=1,...,n

(
U(i−1)(θ̂)− i − 1

n

)}
.
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• Cramér-von Mises (CvM)

CvMu(θ̂) = n

∫ 1

0

(Fn,S (x)− x)2 dx

=
n∑

i=1

(
U(i−1)(θ̂)− 2i − 1

2n

)2

+
1

12n
.

• Anderson-Darling (AD)

ADu(θ̂) = n

∫ 1

0

(Fn,S (x)− x)2

x(1− x)
dx

= −n − 1

n

n∑
i=1

(2i − 1)
{

log
(
U(i−1)(θ̂)

)
+ log

(
1− U(n−i)(θ̂)

)}
.
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Liu et al (Liu, Huang, & Zhang, 2012) proposed to perform a GoF test
by comparing the value of KSu(θ̂) to critical values that can be found in
classical tables for testing the uniformity of a sample.

We believe that this approach is questionable because the estimation of θ
should be taken into account: even under H0, the Ui (θ̂) are neither
independent nor uniformly distributed.

So do the distributions of the test statistics under H0 depend on the
model parameters?
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Figure: Boxplots of 4000 simulated test statistics under the ARA∞-PLP model
for different values of b and ρ, a = 0.05 and n = 30.

This experiment seems to indicate that the distributions of the test
statistics under H0 depend on the model parameters.

So the usual approach can not be used to perform the tests.
=⇒ It is necessary to use a parametric bootstrap approach.
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Parametric bootstrap

Let Z (θ̂) denote a generic test statistic. We use the closeness of θ and
θ̂ to approximate the distribution of Z (θ̂).

Algorithm

1. Compute the MLE θ̂ of θ and the statistic Z (θ̂) on the dataset
T1, . . . ,Tn.

2. For i = 1 until L,

a. Generate T ∗1,i ,T
∗
2,i , . . . ,T

∗
n,i under the model of intensity λ(θ̂).

b. Compute θ̂∗i the MLE of θ̂ from T ∗1,i , . . . ,T
∗
n,i .

c. Compute the statistic Z∗i = Z∗i (θ̂∗i ) from T ∗1,i , . . . ,T
∗
n,i and θ̂∗i .

3. The hypothesis H0 is rejected at significance level α if Z (θ̂) is higher
than the empirical quantile of order 1− α of Z∗1 , . . . ,Z

∗
L .
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• The asymptotic validity of the KS and CvM parametric bootstrap
goodness-of-fit tests has been proved in the classical framework of
i.i.d. random variables (Stute, Manteiga, & Quindmil, 1993).

• Results extended to the case of independent random vectors
=⇒ Goodness-of-fit tests for copula models (Genest & Rémillard,
2008).

• In our case, theoretical results are difficult to obtain because of the
dependence between T1, . . . ,Tn.
=⇒ Assessment of the validity of the approach by a simulation
study.
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Simulation design

The tests are performed on a huge number of simulated datasets. The
power of a test is estimated by the percentage of rejection of the null
hypothesis.

• Level of significance α = 0.05.

• Tested null hypotheses H0 : ARA∞-PLP, ARA1-PLP and QR-PLP.

• n = 30 failures.

• M = 1500 simulated datasets for each of the models:

− Brown-Proschan, p ∈ {0.2, 0.8},
− Extended Geometrical Process, bi =

√
i − 1 and

q ∈ {0.8, 0.9, 0.95},
− Quasi-Renewal, q ∈ {0.8, 0.9, 0.95},
− ARA1 or ARA∞, ρ ∈ {0.2, 0.8},

• with PLP initial intensity: a = 0.05, b ∈ {1.5, 2, 2.5, 3} or LLP
initial intensity: a = −5, b ∈ {0.005, 0.01, 0.05, 0.1}

• L = 1000 bootstrap repetitions.
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Test of H0 : ARA∞-PLP

Data simulated under the ARA∞-PLP model (H0).

ρ b KSm CvMm ADm KSu CvMu ADu

0.2

1.5 6.1 4.5 3.9 6.1 6.7 6.3
2 4.9 3.8 3.9 6.1 5.9 6.1

2.5 4.9 3.9 4.4 5.9 5.6 5.0
3 4.9 4.3 4.5 5.5 5.9 5.7

0.8

1.5 5.1 4.8 4.6 3.5 3.7 4.1
2 5.3 5.2 5.5 3.7 4.1 3.5

2.5 4.5 5.0 5.1 6.1 5.6 5.4
3 3.9 4.1 4.3 5.9 4.5 4.9

The empirical levels are close to the theoretical level α = 5%.
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Test of H0 : ARA∞-PLP
Data simulated under the EGP-PLP model.

b q KSm CvMm ADm KSu CvMu ADu

1.5
0.8 22.2 32.3 33.3 17.5 22.7 20.7
0.9 13.9 21.3 21.9 6.2 7.2 6.0

0.95 8.6 11.5 11.9 3.3 3.7 3.2

2
0.8 58.2 70.9 71.9 22.1 25.3 24.9
0.9 29.2 41.0 41.6 6.7 5.9 5.9

0.95 11.4 17.6 17.4 9.5 10.6 10.4

2.5
0.8 81.7 89.7 90.1 17.5 19.9 22.2
0.9 30.4 42.8 43.4 16.2 19.9 21.1

0.95 9.9 16.4 16.8 26.3 32.1 33.0

− The results depend strongly on the value of the parameters. When q
tends to 1, the model gets closer to a renewal process, so H0 is less
rejected.

− Some tests are biased.
− ADm is clearly the best test.
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Conclusion of the simulation study

• Recommendation: perform the ADm and ADu tests.

• Difficulty to distinguish between the ARA∞ and the BP models
that are close to a renewal process (Last & Szekli, 1998).

• The ARA1-PLP and QR-PLP models seem to be very flexible and
are hardly ever rejected.

• Tests of the ARA-PLP models are not powerful when data are
simulated with an initial intensity of type LLP
=⇒ Tests more able to detect a discrepancy in the repair effect
than in the shape of the intrinsic wear.

• Previous remark does not hold for QR models.

• On the whole, the powers are not very high but n = 30. We have
observed an increase in power when setting n = 100.
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EDF data

• 4 identical and independent systems in 4 different EDF coal-fired
power stations: S1, S2, S3 and S4.

• Maintenance times collected during 9 years.

• The tables give the p-values of the tests.

• We have also computed the AIC criterion:

AIC = −2 max
θ∈Θ

log (Ln(θ)) + 2d .

where d is the number of estimated parameters (here d = 3). The
best model among those considered is the one that minimizes the
AIC.
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EDF data - Study of S1

n = 22

Model ARA∞ ARA1 QR
â 1.2×10−4 1.2×10−4 0.0013

b̂ 1.51 1.51 1.18
ρ̂/q̂ 7.6×10−6 7.3×10−5 0.94
KSm 0.95 0.94 0.47
CvMm 0.82 0.60 0.46
ADm 0.58 0.41 0.38
KSu 0.48 0.44 0.09
CvMu 0.55 0.51 0.11
ADu 0.57 0.55 0.21
AIC 264.64 264.64 263.69
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=⇒ None of the 3 models is rejected. QR is considered as the best
model.
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EDF data - Study of S3

n = 16

Model ARA∞ ARA1 QR
â 9.2×10−19 7.6×10−7 0.0012

b̂ 6.14 2.08 1.14
ρ̂/q̂ 0.16 5.0×10−6 0.92
KSm 0.13 0.33 0.38
CvMm 0.39 0.63 0.43
ADm 0.34 0.65 0.31
KSu 0.17 0.4 0.10
CvMu 0.05 0.06 0.01
ADu 0.09 0.06 0.01
AIC 194.82 201.43 205.00
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=⇒ All models are rejected. Possible explanation: data exhibit long
time periods without any failure. This phenomenon can not be captured
by these models.
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Photocopier data

• Maintenance times of a photocopier (Murthy, Xie, & Jiang, 2003).

• n = 42 maintenances during the first 4 and a half year of service.

Model ARA∞ ARA1 QR
â 3.9×10−4 3.7×10−9 2.3×10−5

b̂ 1.6 4.3 2.3
ρ̂/q̂ 1.0×10−6 0.95 0.96
KSm 0.31 0.19 0.44
CvMm 0.26 0.12 0.38
ADm 0.24 0.09 0.31
KSu < 0.01 0.42 0.45
CvMu < 0.01 0.54 0.61
ADu < 0.01 0.60 0.58
AIC 380.33 357.52 349.74
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=⇒ Rejection of ARA∞. We recommend to use QR.
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Conclusion

• We have proposed 2 classes of goodness-of-fit tests, based on:

− martingale residuals
− conditional PIT of the interfailure times.

Evaluation of the quantiles of the test statistics under the null
hypothesis are made with a parametric bootstrap procedure.1

• In both families, the Anderson-Darling tests performed well in
most simulated cases and we recommend their use in practice.

• Methodology completely general: can be applied on any imperfect
maintenance model.

• Very difficult to discriminate between the usual imperfect
maintenance models. Models are very flexible and can be adapted
to a broad range of data. =⇒ Moderate powers of the tests.

1Chauvel C., Dauxois, J.-Y., Doyen, L. and Gaudoin, O. Parametric bootstrap
goodness-of-fit tests for imperfect maintenance models. Submitted. 2015.
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Future work

• Obtain a theoretical validation of the bootstrap procedure.
Method validated by a simulation study.

• Build a test of which statistic is a combination of the ADm and
ADu statistics, such as the maximum or a weighted sum.

• Use other statistics than Kolmogorov-Smirnov, Cramér-von Mises
and Anderson-Darling statistics.

• Find other tests that do not require the bootstrap procedure.

• Obtain asymptotic results for the statistics in order to know their
distribution functions and apply other kinds of tests.

• Incorporate preventive maintenances as well as study the case
where several identical systems are observed in parallel.
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