Grenoble INP

Multi-branch hidden state models for multi-mode deterioration modelling and RUL estimation

Thanh Trung LE, Christophe Bérenguer, Florent Chatelain

Team SAIGA, GIPSA-lab, Grenoble INP

Wednesday, January 20, 2016

JMLS

Conclusion

Industrial context

Continuous production systems

- Complex
- Continuity is a critical issue
- Can fail because of a defective component
- Components deteriorate over time

⇒ Predictive maintenance

1/22/2016 Multi-branch hidden state models for multi-mode deterioration modelling and RUL estimation 2/42

JMLS

SUPREME project

Conclusion

FP7 european project

- "SUstainable PREdictive Maintenance for manufacturing Equipment"
- ▶ 09/2012 -> 08/2015
- 10 partners from both industry and academy
- Purpose: Development of new tools for predictive maintenance to improve productivity, reduce machine downtimes and increase energy efficiency.
- \Rightarrow Application case: Paper machine

Problem statement

Multi-branch discrete-state models

JMLS

Conclusion

Reliability and maintainability module

- Systematic critical component identification based on risk assessment
- Deterioration-based reliability
- > Dynamic adaption of maintenance strategy

Objectives of works

- ✓ Deterioration modeling
- ✓ Remaining Useful Life (RUL) estimation

SUPREME work packages

statement Multi-

Multi-branch discrete-state models

JMLS

Conclusion

Outline

Problem statement

- Multi-branch discrete-state models
- Jump Markov linear systems
- Conclusion & Perspectives

Problem statement

Multi-branch discrete-state models

JMLS

Conclusion

Outline

Problem statement

Multi-branch discrete-state models

Jump Markov linear systems

JMLS

Conclusion

Remaining Useful Life (RUL)

- Residual time before the failure
- Conditional random variable:

 $RUL = T_f - t \left| T_f > t, Z(t) \right|$

- Z(t) : information up to time t;
- T_f : time to failure
- Uncertainties assessment: probabilistic distribution
- RUL estimation: propagation of health indicator toward threshold
- => Need of **deterioration models**

JMLS

Conclusion

Deterioration modeling

- Model the dynamic stochastic behavior of the deterioration
- Link the failure of an item to its deterioration level
- Allow health state assessment
- Basis for RUL prediction

Classification

1/22/2016 Multi-branch hidden state models for multi-mode deterioration modelling and RUL estimation 8/42

Problems

- Health states are difficult to measure or observe directly
- Observations are available, i.e. extracted features from raw condition monitoring data

=> State-space representation

 $\begin{cases} x_t = f(x_{t-1}, \omega_t) : \text{Hidden states} \\ y_t = g(x_t, \nu_t) : \text{Observations} \end{cases}$

1/22/2016 Multi-branch hidden state models for multi-mode deterioration modelling and RUL estimation 9/42

Problems

> Co-existence of multiple modes, even within a single component

Examples: deterioration rates depend on initiation time, on applied load, etc.

⇒ Proposed solution: Multi-branch modeling

- Discrete-state: Multi-branch Hidden Markov models
- Continuous-state: Jump Markov linear systems

1/22/2016 Multi-branch hidden state models for multi-mode deterioration modelling and RUL estimation 10/42

Problem statement

Multi-branch discrete-state models

JMLS

Conclusion

Outline

Multi-branch discrete-state models

Jump Markov linear systems

JMLS

Conclusion

Multi-branch discrete-state modeling

Model construction

- M modes => M branches in parallel
- States are unobservable
- Observations : probabilistic links

Assumptions

- Monotonic deterioration: left-right topology
- Different modes can pass the same health states before the failure
- Exclusive deterioration modes once initiated => No branches switching

JMLS

Conclusion

Multi-branch discrete-state modeling

Multi-branch Hidden Markov Model (MB-HMM)

- Each branch ~ left-right HMM
- Markovian property
- => state sojourn time ~ exponential
 - or geometrical distributions
- => May not be realistic

Multi-branch Hidden semi-Markov Model (MB-HsMM)

- Each branch ~ left-right HsMM
- => allow arbitrary distributions for state sojourn time: Gaussian, Weibull, ...

JMLS

Conclusion

Diagnostics and prognostics framework

Two-phase implementation: offline & online

Off-line phase

Model training

- Training data: high-level features
- Data classification => train each branch separately
 - MB-HMM: Baum-Welch algorithm adaption
 - MB-HsMM: Forward-Backward procedure adaption [Yu06]
- > A priori mode probabilities

$$\pi_k = P(\lambda_k) = K_k / K , \quad k = 1...M$$

 K_k : number of training sequences corresponding to the mode k

*[Yu06]: Practical implementation of an efficient forward-backward algorithm for an explicit-duration hidden Markov model. *IEEE Transactions on Signal Processing*, 54(5), p. 1947-1951.

1/22/2016 Multi-branch hidden state models for multi-mode deterioration modelling and RUL estimation 15/42

On-line phase

Diagnostics

- Mode detection: $\hat{k} = \arg \max_{k} P(\lambda_k \mid \mathbf{O})$
- Health-state assessment: Viterbi algorithm
 - Determine the "best" state sequence: $Q^* = \arg \max P(\mathbf{O},$

• Actual health state = last state in Q^*

$$Q^* = \arg \max_{Q_{\hat{k}}} P(\mathbf{O}, Q_{\hat{k}} \mid \lambda_{\hat{k}})$$

JMLS

Conclusion

JMLS

Conclusion

RUL estimation

One branch (HMM case)

- Suppose that the system is in state S_i of mode k
- > Discrete time: RUL = time to hit state S_f for the 1st time

$$RUL_{i}^{(l)} = P(RUL = l \mid q_{t} = S_{i}) = P(q_{t+l} = S_{F}, q_{t+l-1} \neq S_{F}, \dots, q_{t+1} \neq S_{F} \mid q_{t} = S_{i})$$

Strictly left-right: Given S_i , the system can either stay in S_i or jump to S_{i+1} $RUL_i^{(l)} = a_{ii}RUL_i^{(l-1)} + a_{i(i+1)}RUL_{i+1}^{(l-1)}$

⇒ *Recursive computation*

RUL estimation (cont.)

One branch (HsMM case)

Strictly left-right:

$$\operatorname{RUL}_{i}^{t} = D_{i}^{t} + \sum_{j=i+1}^{N} D_{j}$$

 D_j : sojourn time in states j

 $D_i^t = D_i - \overline{D}_i \mid D_i > \overline{D}_i$ ~ truncated distribution

• Gaussian assumption: $\sum_{j=i+1}^{N} D_j$ ~ Normal distribution

RUL estimation (cont.)

Multi-branch: bayesian model averaging

> Take into account model uncertainty

$$P(\text{RUL} | \mathbf{O}) = \sum_{k=1}^{M} P(\text{RUL} | \lambda_k, \mathbf{O}) P(\lambda_k | \mathbf{O})$$

where
$$P(\lambda_k | \mathbf{O}) = \frac{P(\mathbf{O} | \lambda_k) P(\lambda_k)}{\sum_{k=1}^{M} P(\mathbf{O} | \lambda_k) P(\lambda_k)}$$
 : posteriori mode probability

JMLS

Conclusion

Numerical results

Synthetized data

- 2-branch HMM model
- 4 states for each branch
- Observations are continuous
- ~ bivariate Gaussian distribution

JMLS

Conclusion

1/22/2016 Multi-branch hidden state models for multi-mode deterioration modelling and RUL estimation 21/42

JMLS

Conclusion

Numerical results

Fatigued crack evolution

- Continuous => test of robustness
- Fatigue crack growth (FCG) model
 - Stochastic version: $x_{t_i} = x_{t_{i-1}} + e^{w_{t_i}} C \left(\beta \sqrt{x_{t_{i-1}}}\right)^n \Delta t$
 - Observations: $y_{t_i} = x_{t_i} + \xi_{t_i}$

> Multi modes: $\beta(\varepsilon) = \beta_b \cdot e^{\gamma_{\varepsilon}}$

- Mode 1 (slow) : $\gamma_1 = 0$
- Mode 2 (quick) : $\gamma_2 = 0.75$
- $\gamma_{\mathcal{E}}~$: environment factor

JMLS

Conclusion

Numerical results

1/22/2016 Multi-branch hidden state models for multi-mode deterioration modelling and RUL estimation 23/42

JMLS

120_Γ

100 80

Conclusion

Numerical results

Multi-branch vs. Average model

- Mode "distance": difference between deterioration rates
- ▶ FCG data: fix $\gamma_1 = 0 \Rightarrow$ mode distance ~ γ_2
- RUL estimation performance

JMLS

Conclusion

Case study (MB-HsMM model)

PHM08 competition

- C-MAPSS: large realistic commercial turbofan engine
- 2 data set: training & test
- One set: 218 identical and independent units
- Objectives:

 S_i

- Construct a prognostic method basing on training data set
- \circ Use it to estimate the RUL of each unit in test data set
- Evaluation criterion:

$$S = \sum_{i=1}^{210} S_i$$

218

$$= \begin{cases} e^{-d_i/13} - 1, & d_i \leq 0 \\ e^{d_i/10} - 1, & d_i > 0 \end{cases} : \text{penalty score}$$

$$d_i = RUL_{est}^i - RUL_{real}^i$$

*C-MAPSS: Commercial Modular Aero-Propulsion System Simulation

Simplified diagram of engine simulated in C-MAPSS

JMLS

Conclusion

PHM08 data

Health indicator construction

Clear tendency

Better score than competition winners

* [Le Son *et al.*] Remaining useful life estimation based on stochastic deterioration models: A comparative study. *Reliability Engineering & System Safety 2012*

1/22/2016 Multi-branch hidden state models for multi-mode deterioration modelling and RUL estimation 26/42

JMLS

Conclusion

Application of the MB-HsMM model

Number of deterioration modes

 Different fault propagation trajectories depending on the decrease rates of the flow rate (f) and efficiency (e) parameters

3 scenarios

	2 modes	3 modes	4 modes
Mode 1	f <e< td=""><td>f < e</td><td>f << e</td></e<>	f < e	f << e
Mode 2	f > e	f≈e	f <e< td=""></e<>
Mode 3		f > e	f > e
Mode 4			f >> e
No branches	2	3	4

JMLS

Conclusion

Application of the MB-HsMM model

Topology selection

Observation model: mixture of Gaussian

$$b_j(\mathbf{x}) = \sum_{k=1}^{K} c_{jk} \mathbf{N}(\mathbf{x}; \mu_{jk}, \Sigma_{jk})$$

Bayesian information criterion (BIC): N = 7; K = 2

RUL estimation result

Method	Score	MSE
1-branch HsMM	12246	1157
2-branch HsMM	6456	936
3-branch HsMM	5458	773
4-branch HsMM	3791	694
Wiener-based method	5575	823
Gamma-based method	4107	864

1/22/2016 Multi-branch hidden state models for multi-mode deterioration modelling and RUL estimation 28/42

Summary

- Discrete health states => easy to interpret
- Multi-branch: take into account the co-existence of several deterioration modes
- Better RUL estimation performance
- No mode switching once initiated !

JMLS

Conclusion

Outline

Multi-branch discrete-state models

Jump Markov linear systems

Introduction

Health states: continuous, unobservable

> Deterioration modes transitions, i.e. load dependent deterioration

=> Switching state-space model:

$$\begin{cases} x_t = f(x_{t-1}, \omega_t, s_t) \\ y_t = g(x_t, v_t, s_t) \end{cases}$$

 S_t : realization at time t of discrete variable **S** s_1 s_2 \cdots s_{T-1} s_T x_0 x_1 x_2 \cdots x_{T-1} x_T y_1 y_2 \cdots y_{T-1} y_T Switching state-space model

General model=> linear approximation

JMLS

Conclusion

JMLS

Jump Markov Linear Systems

Linear switching state-space model:

$$\begin{cases} x_t = A_{s_t} x_{t-1} + \omega_t \\ y_t = C_{s_t} x_t + v_t \end{cases} \quad \text{where} \quad \begin{cases} \omega_t \sim N \left(0, Q_{s_t} + V_t \right) \\ v_t \sim N \left(0, R_{s_t} \right) \\ x_0 : N \left(\mu_0, \Sigma_0 \right) \end{cases}$$

▶ M deterioration modes: $s_t \in \{1, 2, K, M\}$

Mode transitions ~ discrete-time Markov chain

• Transition matrix:

$$\Pi = \begin{pmatrix} \pi_{11} & \pi_{12} & \cdots & \pi_{1M} \\ \pi_{21} & \pi_{22} & \cdots & \pi_{2M} \\ \vdots & \vdots & \ddots & \vdots \\ \pi_{M1} & \pi_{M2} & \cdots & \pi_{MM} \end{pmatrix} \quad \text{where} \quad \pi_{ij} = P(s_{t+1} = j \mid s_t = i)$$

• Initial distribution: $\pi_1(i) = P(s_1 = i)$

> Identifiability guarantee: C_{s_t} fixed

JMLS

Model parameters

$$\Theta = \left\{ \left(A_i, Q_i, R_i \right)_{i=1,\dots,M}, \mu_0, \Sigma_0, \Pi, \pi_1 \right\}$$

X, S are hidden => Expectation-Maximization algorithm

• Estep:
$$Q\left(\Theta \mid \Theta^{(k)}\right) = \mathbf{E}\left[\log P\left(X_T, S_T, Y_T \mid \Theta\right) \mid Y_T, \Theta^{(k)}\right]$$

• M step:
$$\Theta^{(k+1)} = \underset{\Theta}{\arg \max} Q\left(\Theta \mid \Theta^{(k)}\right)$$

Problem: presence of switching dynamic

$$\mathbf{Q}\left(\Theta \mid \Theta^{(k)}\right) = \sum_{\mathbf{S}_{T}} \left(\mathbf{P}\left(\mathbf{S}_{T} \mid \mathbf{Y}_{T}, \Theta^{(k)}\right) \int p\left(\mathbf{X}_{T} \mid \mathbf{S}_{T}, \mathbf{Y}_{T}, \Theta^{(k)}\right) \log \mathbf{P}\left(\mathbf{X}_{T}, \mathbf{S}_{T}, \mathbf{Y}_{T} \mid \Theta\right) d\mathbf{X}_{T} \right)$$

=> Computed over all possible sequences of discrete states S_T => Intractable

=> Approximated EM algorithm

1/22/2016 Multi-branch hidden state models for multi-mode deterioration modelling and RUL estimation 33/42

Approximated EM algorithm

Pruning technique

- Idea: Calculate Q over the most "likely" state sequence
- => Adaption of the Viterbi algorithm
- > Do not guarantee the convergence, but still sufficient in several practical cases

Approximated Q function

$$\mathbf{Q}\left(\Theta \mid \Theta^{(k)}\right) \approx \int p\left(\mathbf{X}_T \mid \mathbf{S}_T^*, \mathbf{Y}_T, \Theta^{(k)}\right) \log \mathbf{P}\left(\mathbf{X}_T, \mathbf{S}_T^*, \mathbf{Y}_T \mid \Theta\right) d\mathbf{X}_T$$

 S_T^* : the most likely state sequence

=> Calculated by Rauch-Tung-Streiber (RTS) smoother

Conclusion

JMLS based diagnostics

Mode probabilities

$$\mu_t(i) = P\left(s_t = i\right) = \frac{P\left(\mathbf{S}_{t,i}^*\right)}{\sum_{i=1}^M P\left(\mathbf{S}_{t,i}^*\right)}$$

 $\mathbf{S}_{t,i}^{*}$: the best state sequence at time t that ends in state i

Health state assessment: mixture of mode-dependent estimated states

$$\begin{cases} \hat{x}_{t} = \sum_{i=1}^{M} \mu_{t}(i) \hat{x}_{t,i} \\ \hat{\Sigma}_{t} = \sum_{i=1}^{M} \mu_{t}(i) \hat{\Sigma}_{t,i} + \sum_{i=1}^{M} \mu_{t}(i) \left(\hat{x}_{t,i} - \hat{x}_{t} \right) \left(\hat{x}_{t,i} - \hat{x}_{t} \right)^{T} \end{cases}$$

1/22/2016 Multi-branch hidden state models for multi-mode deterioration modelling and RUL estimation 35/42

RUL prediction

- ➢ Discrete time: $RUL_t = \left(\min k : x_{t+k} ≥ L | x_t < L\right)$
- Mode switching: M fold increase in number of Gaussian distributions
- \Rightarrow Intractable computation
- ⇒ Approximation: merge all one-step predicted Gaussian distributions into one

$$p\left(x_{t+||t|}\right) \approx \sum_{i=1}^{M} \mu_{t+1}(i) \mathbf{N}\left(x_{t+||t|,i}, \Sigma_{t+||t|,i}\right)$$

> Mode probability update $\mu_{t+1}(i) = \sum_{i=1}^{M} \pi_{j,i} \cdot \mu_t(j)$

JMLS

Conclusion

Conclusion

Diagnostics example

Mode detection and health assessment

JMLS

Conclusion

RUL estimation example

Online prediction

JMLS

Conclusion

Outline

- Multi-branch discrete-state models
- Jump Markov linear systems
- Conclusion & Perspectives

Conclusion & Perspectives

Conclusion

- Co-existence of multiple deterioration modes => multi-branch modeling
 - Discrete states: MB-HMM & MB-HsMM models
 - o Continuous states: JMLS model
- Development of corresponding diagnostics & prognostics framework
 - o Detection of the actual deterioration mode
 - Assessment of the current health status
 - Estimation of the RUL

Conclusion & Perspectives

Perspectives

- MB-HMM & MB-HsMM models
 - Relax the left-right assumption
 - Allow mode switching

JMLS model

- Extension to non-linear models
- Improvement of model learning methods
- Semi-Markov mode transitions
- > Dynamic adaptation of maintenance strategies based on RUL estimation results
- Further model validation on real-life data

Thank you for your attention!

