
Problem statement General results for the sensitivity analysis Application to the case of exponentially distributed time-to-failure

Sensitivity analysis for the block replacement policy

Mitra Fouladirad*, Christian Paroissin** and Antoine Grall*
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Problem statement General results for the sensitivity analysis Application to the case of exponentially distributed time-to-failure

Maintenance and sensitivity analysis

Given a parametric distribution of time-to-failure (or lifetime),
maintenance cost and parameters can be optimized

When the parameters of lifetime distribution are unknown, estimation is
required

Optimal maintenance cost and parameters depend on the parameters
estimation

Estimation based on a set of time-to-failure observations

Optimality sensitive to the estimation results

Sensitivity analysis: necessary for an efficient maintenance planning
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Block replacement policy

First step to propose analytical expressions for the sensitivity analysis

Focus on the sensitivity analysis of block replacement policy

The optimisation of this policy requires the optimization of only one
parameter.
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Block replacement policy context

Let T be the time-to-failure (or lifetime) of the device.

The distribution of T depends on some parameter θ ∈ Θ ⊂ Rp

Usual notations: fT (·; θ) the probability distribution function, FT (·; θ) the
cumulative distribution function, and ST (·; θ) the survival function (or
reliability).

No continuous monitoring (monitoring through inspections)

At inspection time, if the device is not failed, it is replaced.

Replacement occurs only after an inspection (in particular there is no
replacement at times-to-failure)

Replacement is AGAN

cr the replacement cost

cu the unavailability cost
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Block replacement policy

This policy depends on a single parameter: the delay between two
consecutive inspections δ

Aim: define the optimal inter-inspection delay δ?

The asymptotic cost per unit of time defined as follows:

C(δ; θ) = lim
t→∞

Ct(δ)

t
,

Ct(δ) is the cost over the time interval [0, t] when the device is inspected
at (kδ)k∈N
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Block replacement policy

According to the renewal theory, one has:

C(δ; θ) =
Expected cost over a cycle

Expected cycle length
.

For the block-replacement policy, we have:

C(δ; θ) =
E[cr + cu(δ − T )+]

δ
=

cr + cu
∫ δ

0
FT (u; θ)du

δ
.

Therefore,
lim
δ→0

C(δ; θ) = +∞ and lim
δ→+∞

C(δ; θ) = cu.

Let us denote δ? := argminδ>0C(δ; θ). Differentiating the above expression of
the cost function, δ? is the root of the following function (with respect to δ):

φ(δ; θ) = E[T1T6δ]− cr
cu

where

E[T1T6δ] =

∫ δ

0

ufT (u; θ)du = −δST (δ; θ) +

∫ δ

0

ST (u; θ)du
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Block replacement policy

Under this condition of existence for δ?, it is well-known that the optimal cost
is equal to:

C? = C(δ?; θ) = cuFT (δ?; θ).

It follows that the optimal delay is given by:

δ? = F−1
T (C?/cu; θ),

where F−1
T (·; θ) is the quantile function of the random variable T . Replacing

this expression of the optimal delay in the function φ and after some simple
algebra, one can obtain an implicit function ψ satisfied by C?:

ψ(C?; θ) =

∫ C?/cu

0

F−1
T (u; θ)du − cr

cu
= 0.
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Tools for the sensitivity analysis

Let be θ0 ∈ Θ the true parameter of the time-to-failure distribution

δ?0 can be computed by determining the root of φ(·; θ0)

Let be θ̂n an estimator of θ, for instance the maximum likelihood estimator

consistency θ̂n
Pr−−−→

n→∞
θ0,

asymptotic normality:
√
n
(
θ̂n − θ0

)
d−−−→

n→∞
N (0,Σ0),

the asymptotic variance-covariance matrix Σ0 depends on θ0

Key: δ-method
when we want to replace θ0 by θ̂n in order to estimate δ?0

8/21 Sensitivity analysis & Maintenance Sensitivity analysis & Maintenance



Problem statement General results for the sensitivity analysis Application to the case of exponentially distributed time-to-failure

δ-method

Theorem (δ-method)

Let (Xn)n∈N∗ be a sequence of Rp-valued random vectors. Assume there exists
µX ∈ Rp and Σ a definite positive matrix such that

√
n (Xn − µX )

d−−−→
n→∞

N(0,Σ).

Let q real functions f1, . . . , fq with continuous first partial derivatives at µX ,
where at least one of these derivatives is non-zero. For i ∈ {1, . . . , q} and for
any n ∈ N∗, set Yi,n = fi (Xn), Yn = (Y1,n, . . . ,Yq,n)T and
µY = (f1(µX ), . . . , fq(µX ))T . Then, the sequence (Yn)n∈N∗ is also
asymptotically normal:

√
n (Yn − µY )

d−−−→
n→∞

N(0,KΣKT ),

where K is the q × p matrix with elements ki,j = ∂fi/∂xj for i ∈ {1, . . . , p} and
j ∈ {1, . . . , q}.
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Extension of the δ-method

δ?0 and C?0 are the solutions of implicit equations and δ-method not valid.
Analogous tool for this situation proposed by Benichou and Gail:

Theorem (Benichou and Gail 1989)

Let (Xn)n∈N∗ be as in the previous theorem. Let µX ∈ Rp and µY ∈ Rq. Let
g1, . . . , gq a set of q continuous functions from Rp ×Rq into R with continuous
first partial derivatives in an open set containing (µX , µY ). Let Yn be the
Rq-valued random vectors satisfying gr (Xn,Yn) = 0 for all r ∈ {1, . . . , q}. Let
Jx,y be the q × q matrix with elements ∂gi

∂yj
(x , y) and let Hx,y be the q × p

matrix with elements ∂gi
∂xj

(x , y). If |JµX ,µY | 6= 0 and if each rows of

J−1
µX ,µY

HµX ,µY contain at least one nonzero element, then

√
n (Yn − µY )

d−−−→
n→∞

N(0, J−1
µX ,µY

HµX ,µY ΣHT
µX ,µY

(J−1
µX ,µY

)T ).
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Asymptotic behavior of the cost

Plug-in method: ∀δ > 0, C(δ; θ̂n) =
cr +cu

∫ δ
0 FT (u;θ̂n)du

δ
.

Theorem (simple application to the cost function)

Assume the hypotheses on θ̂n are satisfied and that θ 7→ C(δ; θ) is differentiable
for any δ > 0. Let ∇θC(δ; θ) be the gradient vector of the cost function (with
respect to θ). If ∇θC(δ; θ) is continuous and if ∇θC(δ; θ0) 6= 0Rp , then

C(δ; θ̂n) is an asymptotic normal (point-wise) estimator of C(δ; θ0):

∀δ > 0,
√
n
(
C(δ; θ̂n)− C(δ; θ0)

)
d−−−→

n→∞
N (0, σ2

cost),

with σ2
cost = ∇θC(δ; θ0)Σ0∇θC(δ; θ0)T .
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Asymptotic behavior of the optimal inspection delay

Recall that δ? is the root of φ(δ; θ)

As an application of the previous thoerems, we can also prove that δ̂?n is also an
asymptotically estimator of δ?0 under some regularity assumptions of the
function φ.

Theorem (simple application to the optimal delay)

Assume that the hypotheses on θ̂n are satisfied and that θ 7→ φ(δ; θ) is
differentiable for any δ > 0. Let ∇θφ(δ; θ) be the gradient vector of φ (with
respect to θ). If ∇θφ(δ; θ) is continuous with ∇θφ(δ; θ0) 6= 0Rp and if

fT (δ?0 ; θ0) 6= 0, then δ̂?n is an asymptotic normal estimator of δ?0 :

√
n
(
δ̂?n − δ?0

)
d−−−→

n→∞
N (0, σ2

opt.delay ),

where σ2
opt.delay is given by:

σ2
opt.delay =

∇θφ(δ?0 ; θ0)Σ0∇θφ(δ?0 ; θ0)T

[δ?0 fT (δ?0 ; θ0)]2 .
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Asymptotic behavior of the optimal inspection cost

Theorem (simple application to the optimal cost)

Assume that the hypotheses on θ̂n are satisfied and that θ 7→ ψ(C?; θ) is
differentiable for any C? > 0. Let ∇θψ(C?; θ) be the gradient vector of ψ
(with respect to θ). If ∇θψ(C?; θ) is continuous with ∇θψ(C?0 ; θ0) 6= 0Rp , then

Ĉ?n is an asymptotic normal estimator of C?0 :

√
n
(
Ĉ?n − C?0

)
d−−−→

n→∞
N (0, σ2

opt.cost),

where σ2
opt.cost is given by:

σ2
opt.cost =

c2
u∇θψ(C?0 ; θ0)Σ0∇θψ(C?0 ; θ0)T[

F−1
T (C?0 /cu; θ0)

]2 .

The gradient function (with respect to θ) can also be expressed as follows:

∇θψ(C?0 ; θ0) =

∫ C?0 /cu

0

∇θF−1
T (u; θ0)du.

13/21 Sensitivity analysis & Maintenance Sensitivity analysis & Maintenance



Problem statement General results for the sensitivity analysis Application to the case of exponentially distributed time-to-failure

Exponential time to failure

Assume that the time-to-failure T is exponentially distributed with
unknown parameter λ0 ∈ R+ = Θ:

λ̂n = n∑n
i=1 Ti

.

√
n
(
λ̂n − λ0

)
d−−−→

n→∞
N (0, λ2

0).

The cost function:

C(δ;λ0) =
1

δ

{
cr + cu

∫ δ

0

(1− exp (−λ0u))du

}
=

1

δ

{
cr + cuδ −

cu
λ0

(
1− e−λ0δ

)}
.

Optimal delay obtained by setting to zero

∂λC(δ;λ0) =
cu
δ

(
1

λ2
0

−
(
δ

λ0
+

1

λ2
0

)
e−λ0δ

)
.

σ2
cost = c2

u

[
1

λ0δ
−
(

1 +
1

λ0δ

)
e−λ0δ

]2

.
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Exponential time to failure

For such distribution, it turns to be:

φ(δ;λ0) =
1

λ0
−
(
δ +

1

λ0

)
e−λ0δ − cr

cu
.

The first order partial derivatives of φ are given by:

∂δφ(δ;λ0) = λ0δe
−λ0δ

∂λφ(δ;λ0) = − 1

λ2
0

+

(
1 +

1

λ0δ
+

1

δ2λ2
0

)
δ2e−λ0δ.

It follows that the asymptotic variance is equal to:

σ2
opt.delay =

(
−eλ0δ

?
0

δ?0λ
2
0

+

(
1 +

1

λ0δ?0
+

1

δ?0
2λ2

0

)
δ?0

)2
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Exponential time to failure

At least, using the expression of the quantile function for the exponential
distribution, we obtain that the optimal cost C?0 satisfies the following equation:

ψ(C?0 ;λ0) =

(
1− C?0

cu

)
log

(
1− C?0

cu

)
+

C?0
cu
− λ0

cr
cu

= 0.

Then, the first order partial derivatives of ψ are given by:

∂δψ(C?;λ0) = − 1

cu
log

(
1− C?0

cu

)
and

∂λψ(C?;λ0) = − cr
cu
.

It follows that the asymptotic variance is equal to:

σ2
opt.cost =

 crλ
2
0

log
(

1− C?0
cu

)
2

.
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Weibull time to failure

We consider a more general case by assuming that the time-to-failure T is
Weibull distributed with parameter θ0 = (α0, β0) ∈ Θ = R2

+: The MLE are
as follows:

α̂n =

(
1

n

n∑
i=1

T β̂n
i

) 1
β̂n

,

β̂n =

[(
n∑

i=1

T β̂n
i logTi

)(
n∑

i=1

T β̂n
i

)−1

−1

n

n∑
i=1

logTi

]−1

Moreover
(α̂n, β̂n)

d−−−→
n→∞

N (0,Σ0)

where

Σ0 =
1

α2
0(Ψ1(1) + Ψ(2)2 − (1 + Ψ(1))2)

(
(α0β0)2 −α0(1 + Ψ(1))

−α0(1 + Ψ(1)) Ψ1(1)+Ψ(2)2

β2
0

)
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Weibull time to failure

C(δ;α0, β0) =
1

δ

{
cr + cu

∫ δ

0

1− e

(
−
( u
α0

)β0
)
du

}

=
1

δ

{
cr + cuδ − cu

α0

β0
γ

(
1

β0
,

(
δ

α0

)β0
)}

.

∂αC(δ;α0, β0) =
1

δ

−
cu

β0

γ

β0
−1
,

(
δ

α0

)β0
 − cu

(
δ

α0

)β0
( δ

α0

)β0
β0

−1−1

e
−
(
δ
α0

)β0


∂βC(δ;α0, β0) =
cu α

δβ2
γ

β−1
,

(
δ

α

)β −
cu α

δβ3
γ

β−1
,

(
δ

α

)β ln

( δ
α

)β (1)

cu α

δβ3
G

3,0
2,3

( δ
α

)β ∣∣∣ 1,1

0,0,β−1

 −
cu α

δβ

(
δ

α

)β
ln

(
δ

α

)( δ
α

)ββ−1−1

e
−
(
δ
α

)β
. (2)

Therefore σ2
opt.cost = ∇θC(δ; θ0)Σ0∇θC(δ; θ0)T can be easily calculated by

replacing the partial derivatives and the variance matrix.

18/21 Sensitivity analysis & Maintenance Sensitivity analysis & Maintenance



Problem statement General results for the sensitivity analysis Application to the case of exponentially distributed time-to-failure

Weibull time to failure

Using the above identity for the finite integral of the survival function, we have:

φ(δ;α0, β0) = −δ exp

(
−
(
δ
α0

)β0
)

+ α0
β0
γ

(
1
β0
,
(
δ
α0

)β0
)
− cr

cu
.

Therefore, the first order partial derivatives of φ are as follows:

∂δφ(δ;α, β) = −e−(δ/α)β + (δ/α)ββe−(δ/α)β−e−( t
α )β +

( t

α

)β
β e−( t

α )β

∂αφ(δ;α, β) = −δβ
α

(
δ

α

)β
e−( δα )β +

1

β
γ

(
1

β
,

(
δ

α

)β)

∂βφ(δ;α, β) = δ

(
δ

α

)β
ln

(
δ

α

)
e−( δα )β − α

β2
γ

(
1

β
,

(
δ

α

)β)

σ2
opt.delay =

∇θφ(δ?0 ;θ0)Σ0∇θφ(δ?0 ;θ0)T

[δ?0 fT (δ?0 ;θ0)]2 .

where f (x ;α, β) = β
α

(
x
α

)β−1
e−(x/α)β is known
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Weibull time to failure

For the Weibull distribution,

∀t ≥ 0, FT (t, θ) = 1− exp

(
−
(

t
α0

)β0
)
.

Therefore δ∗ = α0(− ln(1− C∗/cu))1/β0 , where

∂F−1
T (C∗/cu, θ0)

∂α0
= − ln(1− C∗/cu)1/β0

and
∂F−1

T (C∗/cu, θ0)

∂β0
=
α0 ln(1− C∗/cu)1/β0 ln(ln(1− C∗/cu))

β2
0

Therefore we can calculate,

σ2
opt.cost =

c2
u

∫ C?0 /cu
0 ∇θF

−1
T

(u;θ0)duΣ0
∫ C?0 /cu

0 ∇θF
−1
T

(u;θ0)duT

[F−1
T

(C?0 /cu ;θ0)]2 .
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Thank you for your attention
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