Sensitivity analysis for the block replacement policy

Mitra Fouladirad*, Christian Paroissin** and Antoine Grall*

*Université de Technologie de Troyes Institut Charles Delaunay - STMR UMR CNRS 6281- Systems modelling and dependability Group (LM2S) **Université de Pau et des Pays de l'Adour Laboratoire de Mathématiques et de leurs Applications - UMR CNRS 5142 France

AMMSI, 20 January 2015

(4回) (4回) (4回)

Maintenance and sensitivity analysis

- Given a parametric distribution of time-to-failure (or lifetime), maintenance cost and parameters can be optimized
- When the parameters of lifetime distribution are unknown, estimation is required
- Optimal maintenance cost and parameters depend on the parameters estimation
- Estimation based on a set of time-to-failure observations
- Optimality sensitive to the estimation results
- Sensitivity analysis: necessary for an efficient maintenance planning

- * 部 * * 注 * * 注 *

Block replacement policy

- First step to propose analytical expressions for the sensitivity analysis
- Focus on the sensitivity analysis of block replacement policy
- The optimisation of this policy requires the optimization of only one parameter.

イロン イヨン イヨン イヨン

Block replacement policy context

- Let T be the time-to-failure (or lifetime) of the device.
- The distribution of ${\mathcal T}$ depends on some parameter $heta\in\Theta\subset\mathbb{R}^{
 ho}$
- Usual notations: f_T(·; θ) the probability distribution function, F_T(·; θ) the cumulative distribution function, and S_T(·; θ) the survival function (or reliability).
- No continuous monitoring (monitoring through inspections)
- At inspection time, if the device is not failed, it is replaced.
- Replacement occurs only after an inspection (in particular there is no replacement at times-to-failure)
- Replacement is AGAN
- c_r the replacement cost
- c_u the unavailability cost

イロン イヨン イヨン イヨン

Block replacement policy

- $\bullet\,$ This policy depends on a single parameter: the delay between two consecutive inspections $\delta\,$
- Aim: define the optimal inter-inspection delay δ^{\star}
- The asymptotic cost per unit of time defined as follows:

$$C(\delta; \theta) = \lim_{t \to \infty} \frac{C_t(\delta)}{t},$$

C_t(δ) is the cost over the time interval [0, t] when the device is inspected at (kδ)_{k∈N}

Block replacement policy

According to the renewal theory, one has:

$$C(\delta; \theta) = \frac{\mathsf{Expected cost over a cycle}}{\mathsf{Expected cycle length}}$$

For the block-replacement policy, we have:

$$C(\delta;\theta) = \frac{\mathbb{E}[c_r + c_u(\delta - T)_+]}{\delta} = \frac{c_r + c_u \int_0^{\delta} F_T(u;\theta) du}{\delta}$$

Therefore,

$$\lim_{\delta\to 0} C(\delta;\theta) = +\infty \quad \text{and} \quad \lim_{\delta\to +\infty} C(\delta;\theta) = c_u.$$

Let us denote $\delta^* := \operatorname{argmin}_{\delta>0} C(\delta; \theta)$. Differentiating the above expression of the cost function, δ^* is the root of the following function (with respect to δ):

$$\phi(\delta;\theta) = \mathbb{E}[T\mathbf{1}_{T\leqslant\delta}] - \frac{c_r}{c_u}$$

where

$$\mathbb{E}[T\mathbf{1}_{T\leqslant\delta}] = \int_0^\delta u f_T(u;\theta) \mathrm{d}u = -\delta S_T(\delta;\theta) + \int_0^\delta S_T(u;\theta) \mathrm{d}u$$

イロン イヨン イヨン イヨン

Block replacement policy

Under this condition of existence for δ^* , it is well-known that the optimal cost is equal to:

$$C^{\star} = C(\delta^{\star}; \theta) = c_{u}F_{T}(\delta^{\star}; \theta).$$

It follows that the optimal delay is given by:

$$\delta^{\star} = F_T^{-1}(C^{\star}/c_u;\theta),$$

where $F_T^{-1}(\cdot; \theta)$ is the quantile function of the random variable T. Replacing this expression of the optimal delay in the function ϕ and after some simple algebra, one can obtain an implicit function ψ satisfied by C^* :

$$\psi(C^*;\theta) = \int_0^{C^*/c_u} F_T^{-1}(u;\theta) \mathrm{d}u - \frac{c_r}{c_u} = 0.$$

・ロン ・四 と ・ ヨ と ・ ヨ と …

Tools for the sensitivity analysis

- Let be $\theta_0 \in \Theta$ the true parameter of the time-to-failure distribution
- δ_0^{\star} can be computed by determining the root of $\phi(\cdot; \theta_0)$
- Let be $\widehat{\theta}_n$ an estimator of θ , for instance the maximum likelihood estimator
- consistency $\widehat{\theta}_n \xrightarrow[n \to \infty]{Pr} \theta_0$,
- asymptotic normality: $\sqrt{n} \left(\widehat{\theta}_n \theta_0 \right) \xrightarrow[n \to \infty]{d} \mathcal{N}(0, \Sigma_0),$
- \bullet the asymptotic variance-covariance matrix Σ_0 depends on θ_0

Key: δ -method when we want to replace θ_0 by $\widehat{\theta}_n$ in order to estimate δ_0^*

・ロン ・四 と ・ ヨ と ・ ヨ と …

э

δ -method

Theorem (δ -method)

Let $(X_n)_{n \in \mathbb{N}^*}$ be a sequence of \mathbb{R}^{ρ} -valued random vectors. Assume there exists $\mu_X \in \mathbb{R}^{\rho}$ and Σ a definite positive matrix such that

$$\sqrt{n}(X_n-\mu_X) \xrightarrow[n\to\infty]{d} N(0,\Sigma).$$

Let q real functions f_1, \ldots, f_q with continuous first partial derivatives at μ_X , where at least one of these derivatives is non-zero. For $i \in \{1, \ldots, q\}$ and for any $n \in \mathbb{N}^*$, set $Y_{i,n} = f_i(X_n)$, $Y_n = (Y_{1,n}, \ldots, Y_{q,n})^T$ and $\mu_Y = (f_1(\mu_X), \ldots, f_q(\mu_X))^T$. Then, the sequence $(Y_n)_{n \in \mathbb{N}^*}$ is also asymptotically normal:

$$\sqrt{n}(Y_n - \mu_Y) \xrightarrow[n \to \infty]{d} N(0, K\Sigma K^T),$$

where K is the $q \times p$ matrix with elements $k_{i,j} = \partial f_i / \partial x_j$ for $i \in \{1, \dots, p\}$ and $j \in \{1, \dots, q\}$.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Extension of the δ -method

 δ_0^* and C_0^* are the solutions of implicit equations and δ -method not valid. Analogous tool for this situation proposed by Benichou and Gail:

Theorem (Benichou and Gail 1989)

Let $(X_n)_{n \in \mathbb{N}^*}$ be as in the previous theorem. Let $\mu_X \in \mathbb{R}^p$ and $\mu_Y \in \mathbb{R}^q$. Let g_1, \ldots, g_q a set of q continuous functions from $\mathbb{R}^p \times \mathbb{R}^q$ into \mathbb{R} with continuous first partial derivatives in an open set containing (μ_X, μ_Y) . Let Y_n be the \mathbb{R}^q -valued random vectors satisfying $g_r(X_n, Y_n) = 0$ for all $r \in \{1, \ldots, q\}$. Let $J_{x,y}$ be the $q \times q$ matrix with elements $\frac{\partial g_i}{\partial y_j}(x, y)$ and let $H_{x,y}$ be the $q \times p$ matrix with elements $\frac{\partial g_i}{\partial x_j}(x, y)$. If $|J_{\mu_X, \mu_Y}| \neq 0$ and if each rows of $J_{\mu_X, \mu_Y}^{-1} H_{\mu_X, \mu_Y}$ contain at least one nonzero element, then

$$\sqrt{n}\left(Y_n-\mu_Y\right)\xrightarrow[n\to\infty]{d} N(0,J_{\mu_X,\mu_Y}^{-1}H_{\mu_X,\mu_Y}\Sigma H_{\mu_X,\mu_Y}^T(J_{\mu_X,\mu_Y}^{-1})^T).$$

・ロト ・ 一 ト ・ ヨト ・ 日 ト

Asymptotic behavior of the cost

Plug-in method:
$$\forall \delta > 0$$
, $C(\delta; \hat{\theta}_n) = \frac{c_r + c_u \int_0^{\delta} F_T(u; \hat{\theta}_n) du}{\delta}$.

Theorem (simple application to the cost function)

Assume the hypotheses on $\hat{\theta}_n$ are satisfied and that $\theta \mapsto C(\delta; \theta)$ is differentiable for any $\delta > 0$. Let $\nabla_{\theta} C(\delta; \theta)$ be the gradient vector of the cost function (with respect to θ). If $\nabla_{\theta} C(\delta; \theta)$ is continuous and if $\nabla_{\theta} C(\delta; \theta_0) \neq 0_{\mathbb{R}^p}$, then $C(\delta; \hat{\theta}_n)$ is an asymptotic normal (point-wise) estimator of $C(\delta; \theta_0)$:

$$orall \delta > 0, \quad \sqrt{n} \left(C(\delta; \widehat{ heta}_n) - C(\delta; heta_0)
ight) \stackrel{d}{\longrightarrow} \mathcal{N}(0, \sigma^2_{cost}),$$

with $\sigma_{cost}^2 = \nabla_{\theta} C(\delta; \theta_0) \Sigma_0 \nabla_{\theta} C(\delta; \theta_0)^T$.

- 4 回 2 - 4 □ 2 - 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □

Asymptotic behavior of the optimal inspection delay

Recall that δ^* is the root of $\phi(\delta; \theta)$

As an application of the previous theorems, we can also prove that $\hat{\delta}_n^{\star}$ is also an asymptotically estimator of δ_0^{\star} under some regularity assumptions of the function ϕ .

Theorem (simple application to the optimal delay)

Assume that the hypotheses on $\hat{\theta}_n$ are satisfied and that $\theta \mapsto \phi(\delta; \theta)$ is differentiable for any $\delta > 0$. Let $\nabla_{\theta}\phi(\delta; \theta)$ be the gradient vector of ϕ (with respect to θ). If $\nabla_{\theta}\phi(\delta; \theta)$ is continuous with $\nabla_{\theta}\phi(\delta; \theta_0) \neq 0_{\mathbb{R}^p}$ and if $f_T(\delta_0^*; \theta_0) \neq 0$, then $\hat{\delta}_n^*$ is an asymptotic normal estimator of δ_0^* :

$$\sqrt{n}\left(\widehat{\delta}_{n}^{\star}-\delta_{0}^{\star}
ight)\xrightarrow[n
ightarrow\infty]{d}\mathcal{N}(0,\sigma_{\textit{opt.delay}}^{2}),$$

where $\sigma_{opt.delay}^2$ is given by:

$$\sigma_{\textit{opt.delay}}^{2} = \frac{\nabla_{\theta} \phi(\delta_{0}^{\star}; \theta_{0}) \Sigma_{0} \nabla_{\theta} \phi(\delta_{0}^{\star}; \theta_{0})^{T}}{\left[\delta_{0}^{\star} f_{T}(\delta_{0}^{\star}; \theta_{0})\right]^{2}}$$

イロト 不得 トイヨト イヨト

Asymptotic behavior of the optimal inspection cost

Theorem (simple application to the optimal cost)

Assume that the hypotheses on $\hat{\theta}_n$ are satisfied and that $\theta \mapsto \psi(C^*; \theta)$ is differentiable for any $C^* > 0$. Let $\nabla_{\theta}\psi(C^*; \theta)$ be the gradient vector of ψ (with respect to θ). If $\nabla_{\theta}\psi(C^*; \theta)$ is continuous with $\nabla_{\theta}\psi(C_0^*; \theta_0) \neq 0_{\mathbb{R}^p}$, then \hat{C}_n^* is an asymptotic normal estimator of C_0^* :

$$\sqrt{n}\left(\widehat{C}_{n}^{\star}-C_{0}^{\star}
ight) \xrightarrow[n \to \infty]{d} \mathcal{N}(0,\sigma_{opt.cost}^{2}),$$

where $\sigma_{\textit{opt.cost}}^2$ is given by:

$$\sigma_{opt.cost}^{2} = \frac{c_{u}^{2} \nabla_{\theta} \psi(C_{0}^{\star};\theta_{0}) \Sigma_{0} \nabla_{\theta} \psi(C_{0}^{\star};\theta_{0})^{T}}{\left[F_{T}^{-1}(C_{0}^{\star}/c_{u};\theta_{0})\right]^{2}}$$

The gradient function (with respect to θ) can also be expressed as follows:

$$\nabla_{\theta}\psi(C_0^{\star};\theta_0)=\int_0^{C_0^{\star}/c_u}\nabla_{\theta}F_T^{-1}(u;\theta_0)\mathrm{d}u.$$

글▶ ★ 글▶

Exponential time to failure

- Assume that the time-to-failure T is exponentially distributed with unknown parameter $\lambda_0 \in \mathbb{R}_+ = \Theta$:
- $\widehat{\lambda}_n = \frac{n}{\sum_{i=1}^n T_i}$. • $\sqrt{n} \left(\widehat{\lambda}_n - \lambda_0 \right) \xrightarrow[n \to \infty]{d} \mathcal{N}(0, \lambda_0^2).$
- The cost function:

$$\begin{split} \mathcal{C}(\delta;\lambda_0) &= \frac{1}{\delta}\left\{c_r + c_u\int_0^\delta\left(1 - \exp\left(-\lambda_0 u\right)\right)\mathrm{d} u\right\} \\ &= \frac{1}{\delta}\left\{c_r + c_u\delta - \frac{c_u}{\lambda_0}\left(1 - e^{-\lambda_0\delta}\right)\right\}. \end{split}$$

Optimal delay obtained by setting to zero

$$\partial_{\lambda} C(\delta; \lambda_0) = rac{c_u}{\delta} \left(rac{1}{\lambda_0^2} - \left(rac{\delta}{\lambda_0} + rac{1}{\lambda_0^2}
ight) e^{-\lambda_0 \delta}
ight).$$
 $\sigma_{cost}^2 = c_u^2 \left[rac{1}{\lambda_0 \delta} - \left(1 + rac{1}{\lambda_0 \delta}
ight) e^{-\lambda_0 \delta}
ight]^2.$

<ロ> (日) (日) (日) (日) (日)

э

Exponential time to failure

For such distribution, it turns to be:

$$\phi(\delta;\lambda_0) = rac{1}{\lambda_0} - \left(\delta + rac{1}{\lambda_0}
ight) e^{-\lambda_0\delta} - rac{c_r}{c_u}$$

The first order partial derivatives of ϕ are given by:

$$\partial_{\delta}\phi(\delta;\lambda_0) = \lambda_0 \delta e^{-\lambda_0 \delta}$$

$$\partial_{\lambda}\phi(\delta;\lambda_0) = -rac{1}{\lambda_0^2} + \left(1+rac{1}{\lambda_0\delta}+rac{1}{\delta^2\lambda_0^2}
ight)\delta^2 e^{-\lambda_0\delta}$$

It follows that the asymptotic variance is equal to:

$$\sigma^2_{opt.delay} = \left(-\frac{e^{\lambda_0 \delta_0^\star}}{\delta_0^\star \lambda_0^2} + \left(1 + \frac{1}{\lambda_0 \delta_0^\star} + \frac{1}{\delta_0^{\star^2} \lambda_0^2} \right) \delta_0^\star \right)^2$$

<ロ> (日) (日) (日) (日) (日)

Exponential time to failure

At least, using the expression of the quantile function for the exponential distribution, we obtain that the optimal cost C_0^* satisfies the following equation:

$$\psi(C_0^\star;\lambda_0) = \left(1 - rac{C_0^\star}{c_u}
ight)\log\left(1 - rac{C_0^\star}{c_u}
ight) + rac{C_0^\star}{c_u} - \lambda_0rac{c_r}{c_u} = 0.$$

Then, the first order partial derivatives of ψ are given by:

$$\partial_{\delta}\psi(\mathit{C}^{\star};\lambda_{0})=-rac{1}{c_{u}}\log\left(1-rac{\mathit{C}_{0}^{\star}}{c_{u}}
ight)$$

and

$$\partial_{\lambda}\psi(\mathcal{C}^{\star};\lambda_{0})=-rac{c_{r}}{c_{u}}.$$

It follows that the asymptotic variance is equal to:

$$\sigma_{opt.cost}^2 = \left[\frac{c_r \lambda_0^2}{\log\left(1 - \frac{c_0^\star}{c_u}\right)}\right]^2$$

イロン イ団と イヨン イヨン

æ

Weibull time to failure

• We consider a more general case by assuming that the time-to-failure T is Weibull distributed with parameter $\theta_0 = (\alpha_0, \beta_0) \in \Theta = \mathbb{R}^2_+$: The MLE are as follows:

$$\widehat{\alpha}_n = \left(\frac{1}{n}\sum_{i=1}^n T_i^{\widehat{\beta}_n}\right)^{\frac{1}{\widehat{\beta}_n}},$$
$$\widehat{\beta}_n = \left[\left(\sum_{i=1}^n T_i^{\widehat{\beta}_n} \log T_i\right) \left(\sum_{i=1}^n T_i^{\widehat{\beta}_n}\right)^{-1} \frac{1}{-n}\sum_{i=1}^n \log T_i\right]^{-1}$$

Moreover

$$(\widehat{\alpha}_n, \widehat{\beta}_n) \xrightarrow[n \to \infty]{d} \mathcal{N}(0, \Sigma_0)$$

where

$$\Sigma_0 = rac{1}{lpha_0^2 (\Psi_1(1) + \Psi(2)^2 - (1 + \Psi(1))^2)} egin{pmatrix} (lpha_0 eta_0)^2 & -lpha_0(1 + \Psi(1)) \ -lpha_0(1 + \Psi(1)) & rac{\Psi_1(1) + \Psi(2)^2}{eta_0^2} \end{pmatrix}$$

・ロン ・四 と ・ ヨ と ・ ヨ と

æ

Weibull time to failure

$$C(\delta; \alpha_0, \beta_0) = \frac{1}{\delta} \left\{ c_r + c_u \int_0^{\delta} 1 - e^{\left(-\left(\frac{u}{\alpha_0}\right)^{\beta_0}\right)} \mathrm{d}u \right\}$$
$$= \frac{1}{\delta} \left\{ c_r + c_u \delta - c_u \frac{\alpha_0}{\beta_0} \gamma \left(\frac{1}{\beta_0}, \left(\frac{\delta}{\alpha_0}\right)^{\beta_0}\right) \right\}.$$

$$\partial_{\alpha} C(\delta; \alpha_{0}, \beta_{0}) = \frac{1}{\delta} \left\{ -\frac{c_{u}}{\beta_{0}} \gamma \left(\beta_{0}^{-1}, \left(\frac{\delta}{\alpha_{0}} \right)^{\beta_{0}} \right) - c_{u} \left(\frac{\delta}{\alpha_{0}} \right)^{\beta_{0}} \left(\left(\frac{\delta}{\alpha_{0}} \right)^{\beta_{0}} \right)^{\beta_{0}^{-1} - 1} e^{-\left(\frac{\delta}{\alpha_{0}} \right)^{\beta_{0}^{-1}}} \right\}$$

$$\partial_{\beta} \mathcal{C}(\delta; \alpha_{0}, \beta_{0}) = \frac{c_{u} \alpha}{\delta \beta^{2}} \gamma \left(\beta^{-1}, \left(\frac{\delta}{\alpha}\right)^{\beta} \right) - \frac{c_{u} \alpha}{\delta \beta^{3}} \gamma \left(\beta^{-1}, \left(\frac{\delta}{\alpha}\right)^{\beta} \right) \ln \left(\left(\frac{\delta}{\alpha}\right)^{\beta} \right)$$
(1)

$$\frac{c_u \,\alpha}{\delta \beta^3} c_{2,3}^{3,0} \left(\left(\frac{\delta}{\alpha} \right)^{\beta} \Big|_{0,0,\beta-1}^{1,1} \right) - \frac{c_u \,\alpha}{\delta \beta} \left(\frac{\delta}{\alpha} \right)^{\beta} \ln \left(\frac{\delta}{\alpha} \right) \left(\left(\frac{\delta}{\alpha} \right)^{\beta} \right)^{\beta-1-1} e^{-\left(\frac{\delta}{\alpha} \right)^{\beta}}. \tag{2}$$

Therefore $\sigma_{opt.cost}^2 = \nabla_{\theta} C(\delta; \theta_0) \Sigma_0 \nabla_{\theta} C(\delta; \theta_0)^T$ can be easily calculated by replacing the partial derivatives and the variance matrix.

イロン イヨン イヨン イヨン

э

Weibull time to failure

Using the above identity for the finite integral of the survival function, we have:

$$\phi(\delta; \alpha_0, \beta_0) = -\delta \exp\left(-\left(\frac{\delta}{\alpha_0}\right)^{\beta_0}\right) + \frac{\alpha_0}{\beta_0}\gamma\left(\frac{1}{\beta_0}, \left(\frac{\delta}{\alpha_0}\right)^{\beta_0}\right) - \frac{c_r}{c_u}$$

Therefore, the first order partial derivatives of ϕ are as follows:

$$\partial_{\delta}\phi(\delta;\alpha,\beta) = -e^{-(\delta/\alpha)^{\beta}} + (\delta/\alpha)^{\beta}\beta e^{-(\delta/\alpha)^{\beta}} - e^{-(\frac{t}{\alpha})^{\beta}} + (\frac{t}{\alpha})^{\beta}\beta e^{-(\frac{t}{\alpha})^{\beta}}$$
$$\partial_{\alpha}\phi(\delta;\alpha,\beta) = -\frac{\delta\beta}{\alpha}\left(\frac{\delta}{\alpha}\right)^{\beta}e^{-(\frac{\delta}{\alpha})^{\beta}} + \frac{1}{\beta}\gamma\left(\frac{1}{\beta},\left(\frac{\delta}{\alpha}\right)^{\beta}\right)$$
$$\partial_{\beta}\phi(\delta;\alpha,\beta) = \delta\left(\frac{\delta}{\alpha}\right)^{\beta}\ln\left(\frac{\delta}{\alpha}\right)e^{-(\frac{\delta}{\alpha})^{\beta}} - \frac{\alpha}{\beta^{2}}\gamma\left(\frac{1}{\beta},\left(\frac{\delta}{\alpha}\right)^{\beta}\right)$$

$$\sigma_{opt.delay}^{2} = \frac{\nabla_{\theta} \phi(\delta_{0}^{\star};\theta_{0}) \Sigma_{0} \nabla_{\theta} \phi(\delta_{0}^{\star};\theta_{0})^{T}}{\left[\delta_{0}^{\star} f_{T}(\delta_{0}^{\star};\theta_{0})\right]^{2}}.$$

where $f(x; \alpha, \beta) = \frac{\beta}{\alpha} \left(\frac{x}{\alpha}\right)^{\beta-1} e^{-(x/\alpha)^{\beta}}$ is known

・ロト ・個ト ・ヨト ・ヨト

æ

Weibull time to failure

For the Weibull distribution,

$$orall t \geq 0, \quad F_{\mathcal{T}}(t, heta) = 1 - \exp\left(-\left(rac{t}{lpha_0}
ight)^{eta_0}
ight).$$

Therefore $\delta^* = lpha_0 (-\ln(1-\mathcal{C}^*/c_{\scriptscriptstyle \! U}))^{1/eta_0}$, where

$$\frac{\partial \mathcal{F}_T^{-1}(\mathcal{C}^*/c_u,\theta_0)}{\partial \alpha_0} = -\ln(1-\mathcal{C}^*/c_u)^{1/\beta_0}$$

and

$$\frac{\partial F_T^{-1}(C^*/c_u, \theta_0)}{\partial \beta_0} = \frac{\alpha_0 \ln(1 - C^*/c_u)^{1/\beta_0} \ln(\ln(1 - C^*/c_u))}{\beta_0^2}$$

Therefore we can calculate,

$$\sigma_{opt.cost}^2 = \frac{c_u^2 \int_0^{C_0^\star/c_u} \nabla_\theta F_T^{-1}(u;\theta_0) \mathrm{d} u \Sigma_0 \int_0^{C_0^\star/c_u} \nabla_\theta F_T^{-1}(u;\theta_0) \mathrm{d} u^T}{\left[F_T^{-1}(C_0^\star/c_u;\theta_0)\right]^2}.$$

イロン イ団と イヨン イヨン

æ

Thank you for your attention