Parametric bootstrap goodness-of-fit tests for imperfect maintenance models

Cécile CHAUVEL¹, Jean-Yves $DAUXOIS^2$, Laurent $DOYEN^1$ and Olivier $GAUDOIN^1$

1: Laboratoire Jean Kuntzmann, Université Grenoble Alpes 2: Institut de Mathématiques de Toulouse, Université de Toulouse-INSA

4th AMMSI Workshop, Grenoble, January 2016

Parametric bootstrap goodness-of-fit tests for imperfect maintenance models

2 Parametric bootstrap goodness-of-fit tests

Tests based on martingale residuals Tests based on probability integral transforms Parametric bootstrap

3 Simulation study

4 Applications EDF data Photocopier data

5 Discussion

Context

- Modelling of the failure process of one repairable system.
- Only corrective maintenances, which may be imperfect.

Many imperfect maintenance models have been proposed.

To analyze a dataset, it is necessary to check whether these models are adapted or not \implies Goodness-of-fit (GoF) tests

GoF tests are well known for simple models AGAN and ABAO.

Very few work exist for testing the fit of imperfect maintenance models.

Aim of this work

Develop a methodology for testing the fit of any imperfect maintenance model.

Notations and assumptions

- $-T_1, T_2, \ldots, T_n$ the *n* first failure times of the system, with $T_0 = 0$.
- Repair duration is considered negligible or not taken into account.
- $N = (N_t)_{t \ge 0}$ the failure **counting process**, characterized by its intensity

$$\lambda_{t} = \lim_{\Delta t \to 0} \frac{1}{\Delta t} P(N_{t+\Delta t} - N_{t^{-}} = 1 \mid \mathcal{H}_{t^{-}}), \quad t \ge 0,$$

where \mathcal{H}_{t^-} is the past of the process just before *t*.

An imperfect maintenance model is composed of two parts:

- The initial intensity expresses the intrinsic wear before the first maintenance.
- A model for the effect of maintenances.

Initial intensity

h(t) is the failure rate of the first failure time.

Usual models :

- Power Law Process (PLP) : $h(t) = abt^{b-1}$, $t \ge 0$, a, b > 0.
 - b > 1: the system wears.
 - b = 1: the system is stable.
 - b < 1: the system improves.
- Log Linear Process (LLP): $h(t) = \exp(a + bt)$, t > 0, $a, b \in \mathbb{R}$.
 - b > 0: the system wears.
 - b = 0: the system is stable.
 - b < 0: the system improves.

Initial intensity

h(t) is the failure rate of the first failure time.

Usual models :

- Power Law Process (PLP) : $h(t) = abt^{b-1}$, $t \ge 0$, a, b > 0.
 - b > 1: the system wears.
 - b = 1: the system is stable.
 - b < 1: the system improves.
- Log Linear Process (LLP): $h(t) = \exp(a + bt)$, t > 0, $a, b \in \mathbb{R}$.
 - b > 0: the system wears.
 - b = 0: the system is stable.
 - b < 0: the system improves.

In this presentation, we consider wearing systems.

Maintenance effect

As Good As New (perfect maintenance):
 N is a renewal process and

$$\lambda_t = h\left(t - T_{N_{t^-}}\right), \ t \ge 0$$

As Bad As Old (minimal maintenance):
 N is a Non-Homogeneous Poisson Process (NHPP) and

$$\lambda_t = h(t), t \ge 0$$

- Imperfect maintenance: between ABAO and AGAN.

Some imperfect maintenance models

Brown-Proschan (BP) model (Brown & Proschan, 1983)

Let $p \in [0, 1]$. Each maintenance is:

- AGAN with probability p,
- ABAO with probability 1 p.

The intensity is

$$\lambda_t = h\left(t - T_{N_{t^-}} + \sum_{j=1}^{N_{t^-}} \left(\prod_{k=j}^{N_{t^-}} (1 - B_k)\right) (T_j - T_{j-1})\right), \quad t \ge 0.$$

Quasi-renewal (QR) model (Wang & Pham, 1996)

Let $(Y_i)_{i=1,...,n}$ be a sequence of i.i.d. random variables and q > 0 a parameter characterizing the repair effect. Then, under the QR model,

$$T_i - T_{i-1} = q^{i-1}Y_i, \quad i \in \mathbb{N}^*.$$

The times between two successive failures are independent and the counting process N is a geometric process (Lam, 1988).

The intensity is

$$\lambda_t = q^{-N_{t-}} h\left(q^{-N_{t-}}\left(t - T_{N_{t-}}\right)\right), \quad t \ge 0.$$

- -q = 1: AGAN maintenance.
- $q \in]0,1[:$ stochastically decreasing inter-failure times.
- q > 1: system improvement.
- \implies Geometrical growth of the inter-failure times is a strong condition.

Simulation study

Extended Geometric Process (EGP) (Bordes & Mercier, 2013)

Let $(Y_i)_{i=1,...,n}$ be a sequence of i.i.d. random variables and q > 0 a parameter characterizing the repair effect. Then, under the model,

$$T_i-T_{i-1}=q^{b_i}Y_i,$$

where $(b_i)_{i \in \mathbb{N}^*}$ is a non-decreasing sequence of non-negative real numbers such that

- $b_1 = 0$
- $\lim_{i\to\infty} b_i = \infty$.

For instance, for $i \in \mathbb{N}^*$,

- $b_i = i 1$ (quasi-renewal case),
- $b_i = \sqrt{i-1}$,
- $b_i = \log(i)$.

Virtual age models (Kijima, 1989)

Let $(A_i)_{i=1,...,n}$ be a sequence of positive random variables.

Model assumption : After the i^{th} maintenance, the system behaves like a new system which has not failed until A_i .

 \implies The variables A_i are called **effective ages**.

The intensity is

$$\lambda_t = h\left(A_{N_{t^-}} + t - T_{N_{t^-}}\right), \ t \ge 0.$$

A virtual age model is defined by a particular expression of the effective ages.

ARA_{∞} model (Doyen & Gaudoin, 2004) or Kijima type II

The repair is supposed to reduce the **effective age** by a factor $\rho \leq 1$:

$$\forall i \in \mathbb{N}^*, \quad A_i = (1-\rho)(A_{i-1}+T_i-T_{i-1}),$$

where $A_{i-1} + T_i - T_{i-1}$ is the age of the system just before the *i*th maintenance and $A_0 = 0$.

The intensity is
$$\lambda_t = h\left(t - \rho \sum_{j=0}^{N_t - 1} (1 - \rho)^j T_{N_t - j}\right), \ t \ge 0.$$

ARA₁ model (Doyen & Gaudoin, 2004) or Kijima type I

The supplement of effective age since the last failure is reduced by a factor $\rho \leq 1$:

$$\forall i \in \mathbb{N}^*, \quad A_i = A_{i-1} + (1-\rho)(T_i - T_{i-1}),$$

and $A_0 = 0$.

The intensity is $\lambda_t = h \left(t - \rho T_{N_{t^-}} \right), \ t \ge 0.$

Usually, parameter estimation is done by **likelihood maximization**. \implies Assessment of both the **intrinsinc ageing** and the **repair effect**. Likelihood function:

$$L_n = \left(\prod_{i=1}^n \lambda_{T_i}\right) \exp\left(-\int_0^{T_n} \lambda_t dt\right).$$

1 Imperfect maintenance models

2 Parametric bootstrap goodness-of-fit tests

Tests based on martingale residuals Tests based on probability integral transforms Parametric bootstrap

3 Simulation study

Applications
 EDF data
 Photocopier data

5 Discussion

Construction of a goodness-of-fit test

Let $C = \{\lambda(\theta), \theta \in \Theta \subset \mathbb{R}^d\}$ be an imperfect maintenance model, where θ is the model parameter.

Is C a relevant model for the observed data T_1, \ldots, T_n ? \implies Goodness-of-fit test: statistical test of

 H_0 : " $\lambda \in \mathcal{C}''$ vs H_1 : " $\lambda \notin \mathcal{C}''$

Construction of a GoF test

- 1. Find a statistic expressing the gap between the data and the model.
- 2. **Determine the distribution** of the statistic under H_0 .
- 3. Compare the observed statistic with a quantile of this distribution.

We propose 2 families of GoF tests, based on:

- Martingale residuals.
- Probability integral transforms.

Imperfect maintenance models

2 Parametric bootstrap goodness-of-fit tests Tests based on martingale residuals

3 Simulation study

Martingale

Let $\Lambda = (\Lambda_t)_{t \ge 0}$ be the cumulative intensity of the failure process *N*, with

$$\Lambda(t) = \int_0^t \lambda_s ds, \ t \ge 0.$$

Definition

The process $M = (M_t)_{t \ge 0}$ defined by $M = N - \Lambda$ is a zero mean **martingale**.

N is close to Λ in the sense that the expectation of their difference is null.

Martingale residuals

In our setting, the intensity has a parametric form $\lambda(\theta)$ with $\theta \in \Theta \subset \mathbb{R}^{p}$. Let us denote

• $\Lambda(\theta) = (\Lambda_t(\theta))_{t \ge 0}$ the cumulative intensity of the process, where

$$\Lambda_t(heta)=\int_0^t\lambda_s(heta)ds, \ t\geq 0.$$

• $\hat{\theta}$ the maximum likelihood estimator of θ .

Definition

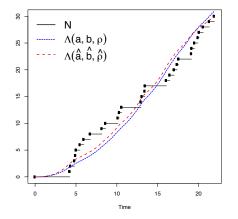
The martingale residuals are the random variables $(\widehat{M}_i)_{i=1,...,n}$ such that

$$\widehat{M}_i = N(T_i) - \Lambda_{T_i}(\widehat{\theta}) = i - \Lambda_{T_i}(\widehat{\theta}).$$

When estimating θ , the martingale property is lost but N is still expected to be close to $\Lambda(\hat{\theta})$.

Example: ARA_{∞} -PLP model

- initial intensity PLP: $h(t) = abt^{b-1}$.
- maintenance effect ARA_{∞}: $A_i = (1 \rho)(A_{i-1} + T_i T_{i-1})$.


Cumulative intensity:

For
$$t \ge 0$$
,

$$\Lambda_t(a, b, \rho) = a \sum_{i=1}^{N_t+1} \left\{ \left(T_i - \rho \sum_{j=0}^{i-2} (1-\rho)^j T_{i-j-1} \right)^b - \left(T_{i-1} - \rho \sum_{j=0}^{i-2} (1-\rho)^j T_{i-j-1} \right)^b \right\},$$

where we set $T_{N_t+1} = t$.

3 parameters: a > 0, b > 1 and $\rho \in [0, 1]$.

Simulated dataset with n = 30 failure times from the ARA_{∞}-PLP model, with a = 0.05, b = 2.5 and $\rho = 0.1$.

The estimated cumulative intensity $\Lambda(\hat{\theta})$ is as close to the counting process as the real cumulative intensity $\Lambda(\theta)$.

Parametric bootstrap goodness-of-fit tests for imperfect maintenance models

Test statistics

We consider 3 statistics which measure discrepancies between N and $\Lambda(\hat{\theta})$.

• Kolmogorov-Smirnov (KS):

$$\mathcal{KS}_m(\hat{\theta}) = \sup_{i=1,\dots,n} \left| \widehat{M}_i \right| = \sup_{i=1,\dots,n} \left| i - \Lambda_{T_i}(\hat{\theta}) \right|.$$

• Cramér-von Mises (CvM):

$$CvM_m(\hat{\theta}) = \int_0^{T_n} \left(N_t - \Lambda_t(\hat{\theta})\right)^2 d\Lambda_t(\hat{\theta}).$$

One can show that:

$$CvM_m(\hat{\theta}) = -\frac{1}{3}\sum_{i=1}^n \left\{ \left(i - 1 - \Lambda_{T_i}(\hat{\theta})\right)^3 - \left(i - 1 - \Lambda_{T_{i-1}}(\hat{\theta})\right)^3 \right\}.$$

• Anderson-Darling (AD):

$$AD_m(\hat{\theta}) = \int_0^{T_n} \frac{\left(N_t - \Lambda_t(\hat{\theta})\right)^2}{\Lambda_t(\hat{\theta})\left(n + 1 - \Lambda_t(\hat{\theta})\right)} d\Lambda_t(\hat{\theta}).$$

One can show that:

$$\begin{split} AD_m(\hat{\theta}) &= \frac{1}{n+1} \sum_{i=2}^n \left\{ (i-1)^2 \log \left(\frac{\Lambda_{T_i}(\hat{\theta})}{\Lambda_{T_{i-1}}(\hat{\theta})} \right) - (n+2-i)^2 \log \left(\frac{n+1-\Lambda_{T_i}(\hat{\theta})}{n+1-\Lambda_{T_{i-1}}(\hat{\theta})} \right) \right\} \\ &+ (n+1) \log \left(1 - \frac{\Lambda_{T_1}(\hat{\theta})}{n+1} \right) - n. \end{split}$$

 Parametric bootstrap goodness-of-fit tests Tests based on martingale residuals
 Tests based on probability integral transforms Parametric bootstrap

3 Simulation study

References

Probability Integral Transform

Under H_0 : " $\lambda \in \mathcal{C}$ ", for i = 0, ..., n - 1, the random variables

 $\Lambda_{\mathcal{T}_{i+1}}(\theta) - \Lambda_{\mathcal{T}_i}(\theta)$

are i.i.d. and follow the $\mathcal{E}(1)$ distribution.

 \rightarrow Transformation into uniform variables.

Definition

For i = 0, ..., n-1, let $S(\cdot | \mathbf{T}_i; \theta)$ denote the **reliability function** of the inter-failure time $T_{i+1} - T_i$ conditionally to $\mathbf{T}_i = (T_1, T_2, ..., T_i)$:

$$\begin{split} S(s \mid \mathbf{T}_i; \theta) &:= P(T_{i+1} - T_i > s \mid \mathbf{T}_i; \theta) \\ &= \exp\left(-\Lambda_{T_i+s}(\theta) + \Lambda_{T_i}(\theta)\right), \quad \text{for } s \geq 0. \end{split}$$

Definition - conditional Probability Integral Transform (PIT)

When applying this reliability function to the observed inter-failure times, we define the variables

$$U_i(\theta) = S(T_{i+1} - T_i \mid \mathbf{T}_i; \theta), \ i = 0, \ldots, n-1.$$

This transform of the variables $T_{i+1} - T_i$ is also known as Rosenblatt's transform.

Under H_0 , the U_i 's are i.i.d. with standard uniform distribution.

In practice, θ is estimated and we will test the uniformity of $U_0(\hat{\theta}), \ldots, U_{n-1}(\hat{\theta})$.

ł

Test statistics based on the U_i

Let $F_{n,S}$ be the empirical c.d.f. of the random variables $U_i(\hat{\theta})$ and

$$U_{(0)}(\hat{ heta}) \leq U_{(1)}(\hat{ heta}) \leq \cdots \leq U_{(n-1)}(\hat{ heta}).$$

We propose 3 test statistics:

• Kolmogorov-Smirnov (KS)

$$KS_{u}(\hat{\theta}) = \sqrt{n} \sup_{x \in [0,1]} |F_{n,S}(x) - x| = \sqrt{n} \max\left\{ \max_{i=1,\dots,n} \left(\frac{i}{n} - U_{(i-1)}(\hat{\theta}) \right), \max_{i=1,\dots,n} \left(U_{(i-1)}(\hat{\theta}) - \frac{i-1}{n} \right) \right\}.$$

• Cramér-von Mises (CvM)

$$CvM_{u}(\hat{\theta}) = n \int_{0}^{1} (F_{n,S}(x) - x)^{2} dx$$
$$= \sum_{i=1}^{n} \left(U_{(i-1)}(\hat{\theta}) - \frac{2i-1}{2n} \right)^{2} + \frac{1}{12n}.$$

• Anderson-Darling (AD)

$$\begin{aligned} AD_{u}(\hat{\theta}) &= n \int_{0}^{1} \frac{\left(F_{n,S}(x) - x\right)^{2}}{x(1 - x)} dx \\ &= -n - \frac{1}{n} \sum_{i=1}^{n} (2i - 1) \left\{ \log \left(U_{(i-1)}(\hat{\theta})\right) + \log \left(1 - U_{(n-i)}(\hat{\theta})\right) \right\}. \end{aligned}$$

1 Imperfect maintenance models

2 Parametric bootstrap goodness-of-fit tests

Tests based on martingale residuals Tests based on probability integral transforms Parametric bootstrap

3 Simulation study

Applications EDF data Photocopier dat.

Liu et al (Liu, Huang, & Zhang, 2012) proposed to perform a GoF test by comparing the value of $KS_u(\hat{\theta})$ to critical values that can be found in classical tables for testing the uniformity of a sample.

We believe that this approach is questionable because the estimation of θ should be taken into account: even under H_0 , the $U_i(\hat{\theta})$ are neither independent nor uniformly distributed.

So do the distributions of the test statistics under H_0 depend on the model parameters?

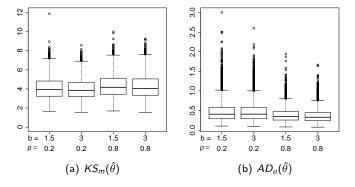


Figure: Boxplots of 4000 simulated test statistics under the ARA_{∞}-PLP model for different values of *b* and ρ , *a* = 0.05 and *n* = 30.

This experiment seems to indicate that the distributions of the test statistics under H_0 depend on the model parameters.

So the usual approach can not be used to perform the tests. \implies It is necessary to use a **parametric bootstrap** approach.

Parametric bootstrap

Let $Z(\hat{\theta})$ denote a generic test statistic. We use the closeness of θ and $\hat{\theta}$ to approximate the distribution of $Z(\hat{\theta})$.

Algorithm

- 1. Compute the MLE $\hat{\theta}$ of θ and the statistic $Z(\hat{\theta})$ on the dataset T_1, \ldots, T_n .
- 2. For i = 1 until L,
 - a. Generate $T_{1,i}^*, T_{2,i}^*, \ldots, T_{n,i}^*$ under the model of intensity $\lambda(\hat{\theta})$.
 - b. Compute $\hat{\theta}_i^*$ the MLE of $\hat{\theta}$ from $T_{1,i}^*, \ldots, T_{n,i}^*$.
 - c. Compute the statistic $Z_i^* = Z_i^*(\hat{\theta}_i^*)$ from $T_{1,i}^*, \ldots, T_{n,i}^*$ and $\hat{\theta}_i^*$.
- 3. The hypothesis H_0 is rejected at significance level α if $Z(\hat{\theta})$ is higher than the empirical quantile of order 1α of Z_1^*, \ldots, Z_L^* .

- The asymptotic validity of the KS and CvM parametric bootstrap goodness-of-fit tests has been proved in the classical framework of **i.i.d. random variables** (Stute, Manteiga, & Quindmil, 1993).
- Results extended to the case of independent random vectors
 ⇒ Goodness-of-fit tests for copula models (Genest & Rémillard, 2008).
- In our case, theoretical results are difficult to obtain because of the dependence between T₁,..., T_n.
 ⇒ Assessment of the validity of the approach by a simulation study.

1 Imperfect maintenance models

2) Parametric bootstrap goodness-of-fit tests

Tests based on martingale residuals Tests based on probability integral transforms Parametric bootstrap

3 Simulation study

Applications
 EDF data
 Photocopier data

5 Discussion

Simulation design

The tests are performed on a huge number of simulated datasets. The power of a test is estimated by the percentage of rejection of the null hypothesis.

- Level of significance $\alpha = 0.05$.
- Tested null hypotheses H_0 : ARA_{∞}-PLP, ARA₁-PLP and QR-PLP.
- n = 30 failures.
- M = 1500 simulated datasets for each of the models:
 - **Brown-Proschan**, $p \in \{0.2, 0.8\}$,
 - Extended Geometrical Process, $b_i = \sqrt{i-1}$ and $q \in \{0.8, 0.9, 0.95\},\$
 - **Quasi-Renewal**, $q \in \{0.8, 0.9, 0.95\}$,
 - **ARA**₁ or **ARA**_{∞}, $ho \in \{0.2, 0.8\}$,
- with PLP initial intensity: a = 0.05, b ∈ {1.5, 2, 2.5, 3} or LLP initial intensity: a = -5, b ∈ {0.005, 0.01, 0.05, 0.1}
- L = 1000 bootstrap repetitions.

Test of H_0 : ARA_{∞}-PLP

Data simulated under the ARA_{∞}-PLP model (H_0).

ρ	b	KS _m	CvM_m	AD_m	KS _u	CvM _u	AD_u
0.2	1.5	6.1	4.5	3.9	6.1	6.7	6.3
	2	4.9	3.8	3.9	6.1	5.9	6.1
	2.5	4.9	3.9	4.4	5.9	5.6	5.0
	3	4.9	4.3	4.5	5.5	5.9	5.7
0.8	1.5	5.1	4.8	4.6	3.5	3.7	4.1
	2	5.3	5.2	5.5	3.7	4.1	3.5
	2.5	4.5	5.0	5.1	6.1	5.6	5.4
	3	3.9	4.1	4.3	5.9	4.5	4.9

The empirical levels are close to the theoretical level $\alpha = 5\%$.

Test of H_0 : ARA_{∞}-PLP

Data simulated under the EGP-PLP model.

b	q	KS _m	CvM_m	AD_m	KS _u	CvM_u	AD_u
1.5	0.8	22.2	32.3	33.3	17.5	22.7	20.7
	0.9	13.9	21.3	21.9	6.2	7.2	6.0
	0.95	8.6	11.5	11.9	3.3	3.7	3.2
2	0.8	58.2	70.9	71.9	22.1	25.3	24.9
	0.9	29.2	41.0	41.6	6.7	5.9	5.9
	0.95	11.4	17.6	17.4	9.5	10.6	10.4
2.5	0.8	81.7	89.7	90.1	17.5	19.9	22.2
	0.9	30.4	42.8	43.4	16.2	19.9	21.1
	0.95	9.9	16.4	16.8	26.3	32.1	33.0

- The results depend strongly on the value of the parameters. When q tends to 1, the model gets closer to a renewal process, so H_0 is less rejected.
- Some tests are biased.
- AD_m is clearly the best test.

Conclusion of the simulation study

- Recommendation: perform the AD_m and AD_u tests.
- Difficulty to distinguish between the ARA $_{\infty}$ and the BP models that are close to a renewal process (Last & Szekli, 1998).
- The ARA₁-PLP and QR-PLP models seem to be very flexible and are hardly ever rejected.
- Tests of the ARA-PLP models are not powerful when data are simulated with an initial intensity of type LLP
 Tests more able to detect a discrepancy in the repair effect than in the shape of the intrinsic wear.
- Previous remark does not hold for QR models.
- On the whole, the powers are not very high but n = 30. We have observed an increase in power when setting n = 100.

1 Imperfect maintenance models

2 Parametric bootstrap goodness-of-fit tests

Tests based on martingale residuals Tests based on probability integral transforms Parametric bootstrap

3 Simulation study

Applications
 EDF data
 Photocopier data

b Discussion

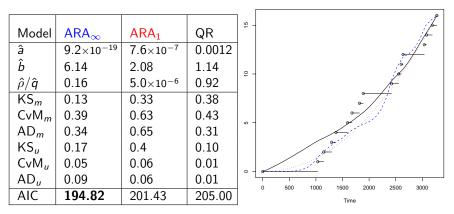
EDF data

- 4 identical and independent systems in 4 different EDF coal-fired power stations: S_1 , S_2 , S_3 and S_4 .
- Maintenance times collected during 9 years.
- The tables give the p-values of the tests.
- We have also computed the AIC criterion:

$$AIC = -2 \max_{\theta \in \Theta} \log (L_n(\theta)) + 2d.$$

where d is the number of estimated parameters (here d = 3). The best model among those considered is the one that minimizes the AIC.

EDF data - Study of S_1

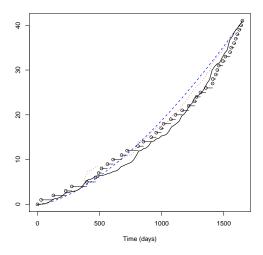

n = 22

				8 -	Ĺ
Model	ARA_∞	ARA ₁	QR		12
â	1.2×10^{-4}	1.2×10^{-4}	0.0013		
ĥ	1.51	1.51	1.18		
$\hat{ ho}/\hat{m{q}}$	7.6×10^{-6}	7.3×10^{-5}	0.94		¢
KS _m	0.95	0.94	0.47	ę -	2
CvM _m	0.82	0.60	0.46		0
AD _m	0.58	0.41	0.38	- <u>م</u>	0
KSu	0.48	0.44	0.09		
CvM_u	0.55	0.51	0.11		o de la constanción de la constancición de la constanción de la constanción de la co
AD_u	0.57	0.55	0.21		0 500 1000 1500 2000 2500 3000
AIC	264.64	264.64	263.69		0 500 1000 1500 2000 2500 3000 Time

 \implies None of the 3 models is rejected. QR is considered as the best model.

EDF data - **Study of** S₃

n = 16


 \implies All models are rejected. Possible explanation: data exhibit long time periods without any failure. This phenomenon can not be captured by these models.

Photocopier data

- Maintenance times of a photocopier (Murthy, Xie, & Jiang, 2003).
- n = 42 maintenances during the first 4 and a half year of service.

Model	ARA_∞	ARA ₁	QR
â	3.9×10^{-4}	3.7×10 ⁻⁹	2.3×10^{-5}
ĥ	1.6	4.3	2.3
$\hat{ ho}/\hat{m{q}}$	1.0×10^{-6}	0.95	0.96
KS _m	0.31	0.19	0.44
CvM_m	0.26	0.12	0.38
AD_m	0.24	0.09	0.31
KSu	< 0.01	0.42	0.45
CvM_u	< 0.01	0.54	0.61
AD_u	< 0.01	0.60	0.58
AIC	380.33	357.52	349.74

\Longrightarrow Rejection of ARA $_{\infty}.$ We recommend to use QR.

Discussion

1 Imperfect maintenance models

2 Parametric bootstrap goodness-of-fit tests

Tests based on martingale residuals Tests based on probability integral transforms Parametric bootstrap

3 Simulation study

Applications
 EDF data
 Photocopier data

Conclusion

- We have proposed 2 classes of goodness-of-fit tests, based on:
 - martingale residuals
 - $-\,$ conditional PIT of the interfailure times.

Evaluation of the quantiles of the test statistics under the null hypothesis are made with a **parametric bootstrap** procedure.¹

- In both families, the Anderson-Darling tests performed well in most simulated cases and we recommend their use in practice.
- Methodology completely general: can be applied on any imperfect maintenance model.

¹Chauvel C., Dauxois, J.-Y., Doyen, L. and Gaudoin, O. *Parametric bootstrap* goodness-of-fit tests for imperfect maintenance models. Submitted. 2015.

Parametric bootstrap goodness-of-fit tests for imperfect maintenance models

Future work

- Obtain a **theoretical validation** of the bootstrap procedure. Method validated by a simulation study.
- Build a test of which statistic is a **combination** of the AD_m and AD_u statistics, such as the maximum or a weighted sum.
- Use other statistics than Kolmogorov-Smirnov, Cramér-von Mises and Anderson-Darling statistics.
- Find other tests that do not require the bootstrap procedure.
- Obtain asymptotic results for the statistics in order to know their distribution functions and apply other kinds of tests.
- Incorporate **preventive maintenances** as well as study the case where **several identical systems** are observed in parallel.

References I

Bordes, L., & Mercier, S. (2013). Extended geometric processes: semiparametric estimation and application to reliability. *Journal of the Iranian Statistical Society*, *12*, 1-34.

- Brown, F., & Proschan, F. (1983). Imperfect repair. *Journal of Applied Probability*, *20*, 851-859.
- Doyen, L., & Gaudoin, O. (2004). Classes of imperfect repair models based on reduction of failure intensity or virtual age. *Reliability Engineering and System Safety*, *84*, 45-56.
- Genest, C., & Rémillard, B. (2008). Validity of the parametric bootstrap for goodness-of-fit testing in semiparametric models. *Annales de I'IHP*, 44, 1096-1127.
- Kijima, M. (1989). Some results for repairable systems with general repair. *Journal of Applied Probability*, *26*, 89-102.
- Lam, Y. (1988). Geometric processes and replacement problem. Acta Mathematicae Applicatae, 4, 366-377.

References II

- Last, G., & Szekli, R. (1998). Asymptotic and monotonicity properties of some repairable systems. Advances in Applied Probability, 30, 1089-1110.
- Liu, Y., Huang, H.-Z., & Zhang, X. (2012). A data-driven approach to selecting imperfect maintenance models. *IEEE Transactions on reliability*, 61, 101-112.
- Murthy, D. N. P., Xie, M., & Jiang, R. (2003). Weibull models. Wiley.
- Stute, W., Manteiga, W. G., & Quindmil, M. P. (1993). Bootstrap based goodness-of-fit-tests. *Metrika*, 40, 243-256.
- Wang, H., & Pham, H. (1996). A quasi renewal process and its application in imperfect maintenance. *International Journal of Systems Science*, 27, 1055-1062.

Thank you for your attention.