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Repair: Immediately after a failure (hence unscheduled)

Minimal (as good as old)

Imperfect

Perfect (as good as new ≡ replacement by a new equipment)

Maintenance: (Pre)scheduled

Imperfect

Perfect

Minimal repair =⇒ N(t) is an NHPP with deterministic

intensity λ(t)

Imperfect repair =⇒ N(t) is a Counting Process with random

intensity λ(t)



More precisely

I Under MR, there is a deterministic function λ(t) such that

lim
h↓0

1

h
E[N(t + h)− N(t)] = λ(t) .

I Under IR, there is a random process λ(t) such that

lim
h↓0

1

h
E[N(t + h)− N(t)|Ft ] = λ(t) ,

where Ft denotes the history of failures up to t (e.g.

Ft = σ{N(s) : s ≤ t}).



Alternatively,

I Under MR, EN(t) =
∫ t

0 λ(u) du = Λ(t);

I Under IR,

EN(t) = E
∫ t

0
λ(u) du =

∫ t

0
Eλ(u) du and

φ(t) = Eλ(t) is the ROCOF function.



Periodic Maintenance (Barlow and Hunter, 1960)

I Minimal Repairs and Perfect Maintenance.

I System will be maintained at fixed and nonrandom time

epochs τ (i.e. at τ , 2 τ , 3 τ and so on).

I Instantaneous repair and maintenance actions (alternatively,

down time of the system is included in the costs and time is

actually operating time.

I Costs of repair and maintenance actions are random but

independent of the failure history of the system.

I Expected cost of a repair action is 1; expected cost of a

maintenance action is k.

I Intensity λ(t) is increasing.



I Suppose the system will be operated during m maintenance

cycles. Since the system is renewed at each maintenance, let

Ni (τ) be the number of failures associated with each cycle.

I Let Mi be the cost of the i-th maintenance and Rij the cost of

the j-th repair inside the i-th maintenance.

I Total cost of the i-th cycle is

Ci = Mi +

Ni (τ)∑
j=1

Rij .

I Total cost for the m maintenance cycles will be

C =
m∑
i=1

Ci =
m∑
i=1

Mi +
m∑
i=1

Ni (τ)∑
j=1

Rij .



I Cost per unit of time is

C =
C

m τ
=

∑m
i=1 Mi +

∑m
i=1

∑Ni (τ)
j=1 Rij

m τ

I Using the SLLN it is easy to see that

lim
m→∞

C =
k + EN(τ)

τ
=

k + Λ(τ)

τ

I However, it is easier to check that this is also the expected

cost per unit of time for a single maintenance cycle.



To minimize

C (τ) = E
M1 +

∑N1(τ)
j=1 R1j

τ
=

k + Λ(τ)

τ

is simple. For instance, we can differentiate to obtain that the

optimal maintenance periodicity should satisfy that

τP λ(τP)− Λ(τP) = k

or, defining B(t) = t λ(t)− Λ(t),

τP = B−1(k) .
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Extensions

Imperfect Repair and Perfect Maintenance (e.g. Kijima et

al, 1983; Toledo et al., 2016):

I Substitute above λ(t) and Λ(t) by φ(t) = Eλ(t) and

Φ(t) = EΛ(t).

I Hence, define now B(t) = t φ(t)− Φ(t) and compute the

optimal periodicity as τP = B−1(k).

Dynamic Optimization: If the information about the failure

history of the system is available, why not use it to obtain a

better solution?

I Since the history of the system is random, so will be the

optimal maintenance time.

I Examples in the literature about optimal replacement (e.g.

Aven, 1983, Aven and Bergman, 1986 or Lam, 1988, among

others).



However, in the optimal replacement literature,

I Suppose that the system is to be maintained at random

epochs τ1 , τ1 + τ2 and so on.

I Assuming as above a large number m of maintenance actions,

the cost per unit of time will be

C (τ1) + C (τ2) + · · ·+ C (τm)

τ1 + τ2 + · · ·+ τm
=
τ1C (τ1) + · · ·+ τmC (τm)

τ1 + · · ·+ τm

I Dividing by m numerator and denominator and taking limits

this tends to

EC (τ)

E τ
6= E

[
C (τ)

τ

]
= EC (τ)



I Perfect maintenance and (possibly) imperfect repair

I Fixed costs of repair (1) and maintenance (k)

I Continuous Wear-out (Gilardoni et al., 2016): We assume

that the intensity λ(t) is a submartingale, in the sense that

E [λ(t)|Fs ] ≥ λ(s).

I We want to find a random (i.e.stopping) time τ to minimize

EC (τ).



Review of Counting Processes

I Probability space (Ω,F ,P)

I Filtration {Ft : t ≥ 0} (e.g. Ft = σ{X (s) : s ≤ t}).

I N(t) is Ft-msble

I N(0) = 0

I The maps t 7→ N(t) are right-continuous

I dN(t) := N(t)− N(t−) equal either 0 or 1

I Doob-Meyer Decomposition: There exist a process λ(t)

and a martingale M(t) such that

N(t) =

∫ t

0
λ(u) du + M(t) .



Main idea

I Note that for small h ≥ 0 we have that

E[N(t + h)|Ft ] ' N(t) + h λ(t)

I Hence,

E[C (t + h)− C (t)|Ft ]

= E
[
k + N(t + h)

t + h
− k + N(t)

t

]
' h

t + h
[λ(t)− C (t)]

I This suggests to stop (i.e. maintain) the process whenever

λ(t) ≥ C (t).

I Define the stopping time τ = inf{t : λ(t) ≥ C (t)}



1 3

0
5

10
15

20

t

τ = a5

(a)

intensity
cost

1 3 5

0
5

10
15

20

t

τ

(b)

intensity
cost

Figure : (a) Intensity function and realization of the cost per unit of time

for a simulated realization of a PLP process with β = 2.5, θ = 1 and

k = 10 and (b) realization of the cost and intensity functions for a

simulated realization of an ARA1 process with the same initial PLP

intensity and k and ρ = 0.5.



Main results

1. For any counting process N(t) such that its intensity is a

submartingale, we have that

EC (τ) ≤ EC (τP) = φ(τP) . (1)

2. Let N(t) be an NHPP with an increasing intensity λ(t) such

that limt→∞ Λ(t)/t =∞. Then, for any stopping time σ ≥ τ ,

E [C (σ) |Fτ ] ≥ C (τ). Hence, for any stopping time σ (not

necessarily greater than τ), EC (σ) ≥ EC (τ).

3. If N(t) is a PLP [i.e. λ(t) = (β/θ) (t/θ)β−1], define

an = η [(k + n)/β]1/β. Then, for n ≥ 0,

P [τ = an] = e−kµ k
(n + k)n−1

n!
µn e−nµ , (2)

where µ = β−1.



Outline of proofs

To prove the first result, we use integration by parts for cadlag

processes:

f (b)g(b)− f (a)g(a)

=

∫ b

a
f (u) dg(u) +

∫ b

a
g(u) df (u) +

∑
a<u≤b

∆g(u) ·∆f (u) .

Hence,

C (t)− C (s) =

∫ t

s

1

u
d [k + N(u)]−

∫ t

s

k + N(u)

u2
du

=

∫ t

s

A(u)

u2
du +

∫ t

s

1

u
dM(u) ,

where A(t) = tλ(t)− k − N(t) = t [λ(t)− C (t)]. Next,



I The process
∫ t
s

1
u dM(u) is a martingale and, using the

Optional Sampling Theorem (OST), for any two stopping

times τ and σ, E
∫ σ
τ

1
u dM(u) = 0.

I Hence,

E[C (σ)− C (τ)] = E
∫ σ

τ

A(u)

u2
du .

I Using the fact that A(t) ≤ 0 if t ≤ τ , if we want to show that

σ is worse than τ , it is enough to show that σ ∨ τ is worse

than τ .

I Using the fact that λ(t) is a submartingale, it is easy to show

that so should be A(t).



Hence,

E[C (τP ∨ τ)− C (τ)] = E
∫ τP∨τ

τ

A(u)

u2
du

E
[
E
∫ τP∨τ

τ

A(u)

u2
du|Fτ

]
= E

[∫ ∞
τ

E[A(u)I (u ≤ τP ∨ τ)|Fτ ]

u2
du

]
≥ 0

because

E[A(u)I (u ≤ τP ∨ τ)|Fτ ]

= E[A(u)|Fτ ] I (u ≤ τP ∨ τ) ≥ A(τ) I (u ≤ τP ∨ τ) ≥ 0 .



The proof of the second result is based on the following Lemma:

I Let N(t) be an NHPP with mean function Λ(t). Then the

process X (t) = N(t)
Λ(t) is a backwards martingale, i.e. for s ≤ t,

N(s)|N(t) ∼ Binomial (n = N(t),p = Λ(s)/Λ(t)) and

E
[
N(s)

Λ(s)
|N(t)

]
=

1

Λ(s)
N(t)

Λ(s)

Λ(t)
=

N(t)

Λ(t)
.

I Then, given Ft , we use the strong markov property and this

result for the process Xτ (t) = N(τ+t)−N(τ)
Λ(τ+t)−Λ(τ) and obtain a

”backwards” stopping time which has the same expected cost

as σ.



To find the distribution of τ for the PLP case, note first that τ is

discrete in the NHPP case.
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Figure : Admissible values of τ (an) and C (τ) (cn) in the NHPP case.

Dashed curves are the maps t 7→ (k + n)/t (n = 0, 1, . . .). Superimposed

there is a trajectory of the cost for which τ = a2, i.e., the number of

failures before maintenance is N(τ) = 2.



I We use Wald’s exponential mean one martingale

Sb(t) = exp{bN(t)− (eb − 1) Λ(t)}

I Next, we show that ESb(τ) = 1.

I Substituting N(τ) = τ λ(τ)− k and noting that, in the PLP

case, τ λ(τ) = β (t/θ)β = β Λ(τ), this allows us to compute

the Moment Generating Function of τ .

I We note that the third result allows us to compute moments

of τ and C (τ) by summing series which converge fast.
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Figure : (a) Deterministic optimal time and expected optimal stopping

time and (b) Expected cost using the optimal deterministic and optimal

stopping time, both for a PLP process with scale θ = 1 and shape

parameter β = 1.5, against ratio of costs k .
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Figure : (a) Deterministic optimal time and expected optimal stopping

time and (b) Expected cost using the optimal deterministic and optimal

stopping time, both for a PLP process with scale θ = 1 and ratio of costs

k = 1, against form parameter β.
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