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Load Combinations

Sustained load, constant, varies rather slowly in time.
Transient load, shocks which occur nearly as impulses.
Linear load combination = sustained load + transient load.

Problem:
First passage time distribution of the combined load
Distribution of the maximum load combination over finite
time intervals
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A Selection from the Literature

Hasofer (1974)
sustained load: Poisson Square Wave
transient load: Marked Poisson process
Larrabee & Cornell (1979) and (1981)
load processes are modeled as filtered Poisson processes
approximation based on the mean upcrossing rate
Gaver & Jacbs (1981)
Floris (1998)
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Square Wave Process

The square wave is used to model the sustained load.
Let (T ,X ), (T1,X1), (T2,X2), . . . be an iid sequence of random
vectors with positive components.

Define S0 ≡ 0, Sn = Sn−1 + Tn, n ≥ 1.
N = {N(t); t ≥ 0} is the counting process associated with
the increasing sequence 0 < S1 < S2 < . . .

N(t) =
∞∑

n=1

1{Sn≤t}.

The sustained load changes at the times Sn and Xn is the
sustained load during the time interval [Sn−1,Sn).
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Maximum of the Square Wave Process

We assume that T and X are independent.
Let X (t) be the sustained load at time t

X (t) =
∞∑

n=1

Xn1[Sn−1,Sn)(t), t ≥ 0.

Then

X ∗(t) = max
0≤s≤t

X (s) = max
(
X1, . . . ,XN(t)

)
,

and

P(X ∗(t) ≤ x) = FX (x)E
[
FX (x)N(t)

]
.
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A renewal-type Equation

If N is a homogeneous Poisson process with intensity λ, then

P(X ∗(t) ≤ x) = FX (x)e−λF̄X (x)t .

In general, y(t) = E
[
FX (x)N(t)] is a solution of the defective

renewal equation

y(t) = F̄T (t) + FX (x)

∫ t

0
y(t − s) dFT (s).
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A renewal-type Equation, Sketch of Proof

X (t) =
∞∑

n=1

Xn1[Sn−1,Sn)(t), t ≥ 0.

Define X̃n = Xn+1, T̃n = Tn+1, S̃n +
∑n

i=1 T̃i , and

X̃ (t) =
∞∑

n=1

X̃n1[S̃n−1,S̃n)(t), t ≥ 0.

Then X and X̃ have the same distribution, and X̃ and (X1,T1)
are independent.

X (t) = X11{t<T1} + X̃ (t − T1), t ≥ 0.
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Shock Loads

Shocks arrive according to a Poisson process
M = {M(t); t ≥ 0} with intensity µ.
the sequence of shocks (Yn)n≥1 is iid with CDF H.
M and Yn)n≥1 are independent.

Maximum transient load is given by

Y ∗(t) = max
(
Y1, . . . ,YM(t)

)
and

P(Y ∗(t) ≤ y) = e−µH(y)t .
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Superposition of Shock Loads

Yi = {Yi(t); t ≥ 0} is a shock load process with arrival intensity
µi and shock size distribution Hi , i = 1, . . . ,n.
If Y1, . . . ,Yn are independent, then the superposition
Y (t) =

∑n
i=1 Yi(t), t ≥ 0, is a shock load with arrival intensity

µ = µ1 + · · ·+ µn and a shock size distribution with CDF

H(y) =
n∑

i=1

µi

µ
Hi(y).
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Notation

Sustained load X

X (t) =
∞∑

n=1

Xn1[Sn−1,Sn)(t), t ≥ 0.

,
Transient load Y = {Y (t); t ≥ 0},
X and Y are independent,
Combined load

Z (t) = X (t) + Y (t), t ≥ 0.
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Maximum Load over [Sn−1,Sn)

Define

Un = max
Sn−1≤s<Sn

Z (s)

= Xn + max
(

YM(Sn−1)+1, . . . ,YM(Sn)

)
Assume that the counting process N is Poisson with intensity λ.
Then, the sequence U1,U2, . . . is iid with CDF

P(Un ≤ x) =

∫ x

0

µ

µ+ λH(x − y)
dFT (y).
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CDF of Z ∗(t)

P(Z ∗(t) ≤ x) = F̄T (t)g(x , t) +

∫ t

0
g(x , s)P(Z ∗(t − s) ≤ x) dFT (s),

with

g(x , t) =

∫ x

0
e−µH̄(x−y) dFX (y).
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Mean of the Total Time above a Reference Level x

L+
x (t) =

N(t)∑
n=1

Tn1{Xn>x} +
(
t − SN(t)

)
1{XN(t)+1>x}

=
∞∑

n=1

Tn1{Xn>x ,Sn≤t} + (t − Sn) 1{XN(t)+1>x ,Sn≤t<Sn+1}

Define

φ(t) = E
[
T11{X1>x ,}

]
,

then

E
[
L+

x (t)
]

= φ(t) +

∫ t

0
φ(t − s) dmT (s).
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Probability distribution of L+
x (t)

We assume that N is a Poisson process with intensity λ. The
distribution of L+

x (t) has an atom in 0:

P(L+
x (t) = 0) = PX ∗(t) ≤ x) = H(x)E

[
H(x)N(t)

]
= H(x)e−λH̄(x)t .

We only present the case t = Sn.

P(L+
x (Sn) > u) =

n∑
k=1

Bp(n; k)P(Sk > u),

with

Bp(n; k) =

(
n
k

)
pk (1− p)n−k and p = P(X > x).
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Summary

We derived explicit formulas for the probability distribution
of combination of loads as a solution of a renewal-type
equation.
Our derivations also hold for general renewal processes,
not only Poisson processes.
We also have results for the total time above a reference
level.
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