A Cox model for component lifetimes with spatial interactions

F. Corset ${ }^{1} \quad$ M. Foularidad ${ }^{2} \quad$ C. Paroissin ${ }^{3}$

M. Anderhalt ${ }^{4} \quad$ E. Remy ${ }^{4}$
${ }^{1}$ Laboratoire Jean Kuntzmann - Université Grenoble Alpes ${ }^{2}$ UTT - Institut Charles delaunay
${ }^{3}$ Université de Pau et des Pays de l'Adour - LMAP
${ }^{4}$ EDF R \& D
Fourth Project Workshop AMMSI, January 20-21, 2016,

Context

- n components displayed on a structure, e.g. a set of crews on a steel plates.
- Components are located on a regular $\sqrt{n} \times \sqrt{n}$ grid.
- The failure of a component may lead to a higher stress on the components in its neighborhood.
- State of components are observed at some inspection times.

Model and Notation

- T_{i} : the lifetime of component i.
- n binary stochastic processes: $\forall i \in\{1, \ldots, n\}, \forall t \geq 0$, $Y_{i}(t)=\mathbf{1}_{T_{i} \leq t}$
- A failure of a component leads to an increase of the hazard function of this component.
- Let B_{i} denote the neighborhood of the i-th component.

Illustrations of neighborhood (4 neighbors)

Illustrations of neighborhood (8 neighbors)

Lifetime distribution

- Hazard function conditionnally to the past (the state of n components).
- Let $\mathcal{H}_{t^{-}}$be the σ-field generated by the n binary stochatic processes defined above up to time t^{-}
- The hazard function of the i-th component, denoted λ_{i} :

$$
\forall t \geq 0, \quad \lambda_{i}\left(t \mid \mathcal{H}_{t^{-}}\right)=\lambda(t) \exp \left(\alpha \sum_{j \in B_{i}} C_{j}(t) Y_{j}(t)+\beta^{\prime} Z_{i}(t)\right)
$$

where $\lambda(\cdot)$ is the baseline hazard function, $\alpha \in \mathbb{R}, \beta \in \mathbb{R}^{p}$ and where, for the i-th component, $C_{i}(\cdot)$ is a time-dependent covariate and $Z_{i}(\cdot)$ is a vector of p time-dependent covariates (temperature, constraints, etc.).

Survival function

The survival function of the component i is given by:

$$
\forall t \geq 0, \quad S_{i}\left(t \mid \mathcal{H}_{t^{-}}\right)=\exp \left(-\int_{0}^{t} \lambda_{i}\left(u \mid \mathcal{H}_{u^{-}}\right) \mathrm{d} u\right) .
$$

Assume λ is the hazard function of the Weibull distribution with
scale parameter $a>0$ and shape parameter $b>0$

Survival function

The survival function of the component i is given by:

$$
\forall t \geq 0, \quad S_{i}\left(t \mid \mathcal{H}_{t^{-}}\right)=\exp \left(-\int_{0}^{t} \lambda_{i}\left(u \mid \mathcal{H}_{u^{-}}\right) \mathrm{d} u\right)
$$

Assume λ is the hazard function of the Weibull distribution with scale parameter $a>0$ and shape parameter $b>0$:

$$
\forall t \geq 0, \quad \lambda(t)=\frac{b}{a}\left(\frac{t}{a}\right)^{b-1}
$$

Simulation in independent case (without covariates)

- Weibull parameters: $a=2$ and $b=2$.
- square grid of 50×50 components.
- failed component are displayed in red.
- $\alpha=0$ (no interaction)
- $\beta=0$ (no covariates)

Plot of failed components (Independent case)

Time $=0.325$
Number of falures: 474

Figure: No interaction ($\alpha=0$)

Simulation in dependent case

- Weibull parameters: $a=2$ and $b=2$.
- square grid of 50×50 components.
- failed component are displayed in red.
- $\alpha=2$
- $\beta=0$ (no covariates)

Plot of failed components (Dependent case)

Figure: with interaction ($\alpha>0$)

Simulation Algorithm

Simulation Algorithm

Require: $n, a, b, \alpha, \beta, Z_{1}(\cdot), \ldots, Z_{n}(\cdot)$

Simulation Algorithm

Require: $n, a, b, \alpha, \beta, Z_{1}(\cdot), \ldots, Z_{n}(\cdot)$
$1: T \leftarrow \operatorname{Vector}($ length $=n$)

Simulation Algorithm

Require: $n, a, b, \alpha, \beta, Z_{1}(\cdot), \ldots, Z_{n}(\cdot)$
$1: T \leftarrow \operatorname{Vector}($ length $=n$)
2: $\tilde{T} \leftarrow \operatorname{Vector}($ length $=n)$

Simulation Algorithm

Require: $n, a, b, \alpha, \beta, Z_{1}(\cdot), \ldots, Z_{n}(\cdot)$
1: $T \leftarrow \operatorname{Vector}($ length $=n$)
2: $\tilde{T} \leftarrow \operatorname{Vector}($ length $=n)$
3: draw U_{1}, \ldots, U_{n} i.i.d. from the uniform distribution over $[0 ; 1]$

Simulation Algorithm

Require: $n, a, b, \alpha, \beta, Z_{1}(\cdot), \ldots, Z_{n}(\cdot)$
1: $T \leftarrow$ Vector (length $=n$)
2: $\tilde{T} \leftarrow \operatorname{Vector}($ length $=n)$
3: draw U_{1}, \ldots, U_{n} i.i.d. from the uniform distribution over [$0 ; 1$]
4: $\{$ Step 1$\}$

Simulation Algorithm

Require: $n, a, b, \alpha, \beta, Z_{1}(\cdot), \ldots, Z_{n}(\cdot)$
1: $T \leftarrow \operatorname{Vector}($ length $=n$)
2: $\tilde{T} \leftarrow \operatorname{Vector}($ length $=n)$
3: draw U_{1}, \ldots, U_{n} i.i.d. from the uniform distribution over [$0 ; 1$]
4: $\{$ Step 1$\}$
5: set $R \leftarrow\{1, \ldots, n\}$ \{set of unfailed components \}

Simulation Algorithm

Require: $n, a, b, \alpha, \beta, Z_{1}(\cdot), \ldots, Z_{n}(\cdot)$
1: $T \leftarrow$ Vector (length $=n$)
2: $\tilde{T} \leftarrow \operatorname{Vector}($ length $=n)$
3: draw U_{1}, \ldots, U_{n} i.i.d. from the uniform distribution over [$0 ; 1$]
4: $\{$ Step 1$\}$
5: set $R \leftarrow\{1, \ldots, n\}$ \{set of unfailed components $\}$
6: draw $\tilde{T}_{1}, \ldots, \tilde{T}_{n}: \log \left(U_{i}\right)+\int_{0}^{t_{i}} \lambda(s) \exp \left(\beta^{\prime} Z_{i}(s)\right) \mathrm{d} s=0$

Simulation Algorithm

Require: $n, a, b, \alpha, \beta, Z_{1}(\cdot), \ldots, Z_{n}(\cdot)$
1: $T \leftarrow$ Vector (length $=n$)
2: $\tilde{T} \leftarrow \operatorname{Vector}($ length $=n$)
3: draw U_{1}, \ldots, U_{n} i.i.d. from the uniform distribution over $[0 ; 1]$
4: $\{$ Step 1$\}$
5: set $R \leftarrow\{1, \ldots, n\}$ \{set of unfailed components $\}$
6: draw $\tilde{T}_{1}, \ldots, \tilde{T}_{n}: \log \left(U_{i}\right)+\int_{0}^{t_{i}} \lambda(s) \exp \left(\beta^{\prime} Z_{i}(s)\right) \mathrm{d} s=0$
7: $i_{1} \leftarrow \operatorname{argmin}_{j \in R} \tilde{T}_{j}$ \{select the next comp. to fail\}

Simulation Algorithm

Require: $n, a, b, \alpha, \beta, Z_{1}(\cdot), \ldots, Z_{n}(\cdot)$
1: $T \leftarrow$ Vector (length $=n$)
2: $\tilde{T} \leftarrow \operatorname{Vector}($ length $=n$)
3: draw U_{1}, \ldots, U_{n} i.i.d. from the uniform distribution over $[0 ; 1]$
4: $\{$ Step 1$\}$
5: set $R \leftarrow\{1, \ldots, n\}$ \{set of unfailed components $\}$
6: draw $\tilde{T}_{1}, \ldots, \tilde{T}_{n}: \log \left(U_{i}\right)+\int_{0}^{t_{i}} \lambda(s) \exp \left(\beta^{\prime} Z_{i}(s)\right) \mathrm{d} s=0$
7: $i_{1} \leftarrow \operatorname{argmin}_{j \in R} \tilde{T}_{j}$ \{select the next comp. to fail\}
8: $T_{i_{1}} \leftarrow \tilde{T}_{i_{1}}$ \{store the next failure times \}

Simulation Algorithm

Require: $n, a, b, \alpha, \beta, Z_{1}(\cdot), \ldots, Z_{n}(\cdot)$
1: $T \leftarrow$ Vector (length $=n$)
2: $\tilde{T} \leftarrow \operatorname{Vector}($ length $=n$)
3: draw U_{1}, \ldots, U_{n} i.i.d. from the uniform distribution over $[0 ; 1]$
4: $\{$ Step 1$\}$
5: set $R \leftarrow\{1, \ldots, n\}$ \{set of unfailed components $\}$
6: draw $\tilde{T}_{1}, \ldots, \tilde{T}_{n}: \log \left(U_{i}\right)+\int_{0}^{t_{i}} \lambda(s) \exp \left(\beta^{\prime} Z_{i}(s)\right) \mathrm{d} s=0$
7: $i_{1} \leftarrow \operatorname{argmin}_{j \in R} \tilde{T}_{j}$ \{select the next comp. to fail\}
8: $T_{i_{1}} \leftarrow \tilde{T}_{i_{1}}$ \{store the next failure times \}
9: for $r \in\{2, \ldots, n\}$ do

17:

Simulation Algorithm

Require: $n, a, b, \alpha, \beta, Z_{1}(\cdot), \ldots, Z_{n}(\cdot)$
$1: T \leftarrow$ Vector(length $=n$)
2: $\tilde{T} \leftarrow \operatorname{Vector}($ length $=n$)
3: draw U_{1}, \ldots, U_{n} i.i.d. from the uniform distribution over $[0 ; 1]$
4: $\{$ Step 1$\}$
5: set $R \leftarrow\{1, \ldots, n\}$ \{set of unfailed components $\}$
6: draw $\tilde{T}_{1}, \ldots, \tilde{T}_{n}: \log \left(U_{i}\right)+\int_{0}^{t_{i}} \lambda(s) \exp \left(\beta^{\prime} Z_{i}(s)\right) \mathrm{d} s=0$
7: $i_{1} \leftarrow \operatorname{argmin}_{j \in R} \tilde{T}_{j}$ \{select the next comp. to fail\}
8: $T_{i_{1}} \leftarrow \tilde{T}_{i_{1}}$ \{store the next failure times \}
9: for $r \in\{2, \ldots, n\}$ do
10: $\{$ Step $r\}$

17:

Simulation Algorithm

Require: $n, a, b, \alpha, \beta, Z_{1}(\cdot), \ldots, Z_{n}(\cdot)$
1: $T \leftarrow$ Vector (length $=n$)
2: $\tilde{T} \leftarrow \operatorname{Vector}($ length $=n$)
3: draw U_{1}, \ldots, U_{n} i.i.d. from the uniform distribution over $[0 ; 1]$
4: $\{$ Step 1$\}$
5: set $R \leftarrow\{1, \ldots, n\}$ \{set of unfailed components $\}$
6: draw $\tilde{T}_{1}, \ldots, \tilde{T}_{n}: \log \left(U_{i}\right)+\int_{0}^{t_{i}} \lambda(s) \exp \left(\beta^{\prime} Z_{i}(s)\right) \mathrm{d} s=0$
7: $i_{1} \leftarrow \operatorname{argmin}_{j \in R} \tilde{T}_{j}$ \{select the next comp. to fail\}
8: $T_{i_{1}} \leftarrow \tilde{T}_{i_{1}}$ \{store the next failure times \}
9: for $r \in\{2, \ldots, n\}$ do
10: $\{$ Step $r\}$
11: $R \leftarrow R \backslash\left\{i_{r-1}\right\}$ \{update the set of non-failed components \}

17:

Simulation Algorithm

Require: $n, a, b, \alpha, \beta, Z_{1}(\cdot), \ldots, Z_{n}(\cdot)$
$1: T \leftarrow \operatorname{Vector}($ length $=n$)
2: $\tilde{T} \leftarrow \operatorname{Vector}($ length $=n$)
3: draw U_{1}, \ldots, U_{n} i.i.d. from the uniform distribution over $[0 ; 1]$
4: $\{$ Step 1$\}$
5: set $R \leftarrow\{1, \ldots, n\}$ \{set of unfailed components $\}$
6: draw $\tilde{T}_{1}, \ldots, \tilde{T}_{n}: \log \left(U_{i}\right)+\int_{0}^{t_{i}} \lambda(s) \exp \left(\beta^{\prime} Z_{i}(s)\right) \mathrm{d} s=0$
7: $i_{1} \leftarrow \operatorname{argmin}_{j \in R} \tilde{T}_{j}$ \{select the next comp. to fail\}
8: $T_{i_{1}} \leftarrow \tilde{T}_{i_{1}}$ \{store the next failure times \}
9: for $r \in\{2, \ldots, n\}$ do
10: $\{$ Step r \}
11: $R \leftarrow R \backslash\left\{i_{r-1}\right\}$ \{update the set of non-failed components $\}$
12: \quad for $j \in B_{i_{r-1}} \cap R$ do
13: $\left.\quad \operatorname{draw} \tilde{T}_{j}: \log \left(U_{j}\right)+\int_{T_{i_{r-1}}}^{t_{j}} \lambda(s) \exp \left(\beta Z(s)+\alpha \sum_{k \in B_{j}} C_{k}(s) Y_{k}(s)\right)\right) \mathrm{d} s=0$
14: end for

17:

Simulation Algorithm

Require: $n, a, b, \alpha, \beta, Z_{1}(\cdot), \ldots, Z_{n}(\cdot)$
$1: T \leftarrow \operatorname{Vector}($ length $=n$)
2: $\tilde{T} \leftarrow \operatorname{Vector}($ length $=n$)
3: draw U_{1}, \ldots, U_{n} i.i.d. from the uniform distribution over $[0 ; 1]$
4: $\{$ Step 1$\}$
5: set $R \leftarrow\{1, \ldots, n\}$ \{set of unfailed components $\}$
6: draw $\tilde{T}_{1}, \ldots, \tilde{T}_{n}: \log \left(U_{i}\right)+\int_{0}^{t_{i}} \lambda(s) \exp \left(\beta^{\prime} Z_{i}(s)\right) \mathrm{d} s=0$
7: $i_{1} \leftarrow \operatorname{argmin}_{j \in R} \tilde{T}_{j}$ \{select the next comp. to fail\}
8: $T_{i_{1}} \leftarrow \tilde{T}_{i_{1}}$ \{store the next failure times \}
9: for $r \in\{2, \ldots, n\}$ do
10: $\{$ Step r \}
11: $R \leftarrow R \backslash\left\{i_{r-1}\right\}$ \{update the set of non-failed components $\}$
12: \quad for $j \in B_{i_{r-1}} \cap R$ do
13: $\left.\quad \operatorname{draw} \tilde{T}_{j}: \log \left(U_{j}\right)+\int_{T_{i_{r-1}}}^{t_{j}} \lambda(s) \exp \left(\beta Z(s)+\alpha \sum_{k \in B_{j}} C_{k}(s) Y_{k}(s)\right)\right) \mathrm{d} s=0$
14: \quad end for $\quad i_{r} \leftarrow \operatorname{argmin}_{j \in R} \tilde{T}_{j}$ \{select the next comp. to fail $\}$
17:

Simulation Algorithm

Require: $n, a, b, \alpha, \beta, Z_{1}(\cdot), \ldots, Z_{n}(\cdot)$
$1: T \leftarrow \operatorname{Vector}($ length $=n$)
2: $\tilde{T} \leftarrow \operatorname{Vector}($ length $=n$)
3: draw U_{1}, \ldots, U_{n} i.i.d. from the uniform distribution over $[0 ; 1]$
4: $\{$ Step 1$\}$
5: set $R \leftarrow\{1, \ldots, n\}$ \{set of unfailed components $\}$
6: draw $\tilde{T}_{1}, \ldots, \tilde{T}_{n}: \log \left(U_{i}\right)+\int_{0}^{t_{i}} \lambda(s) \exp \left(\beta^{\prime} Z_{i}(s)\right) \mathrm{d} s=0$
7: $i_{1} \leftarrow \operatorname{argmin}_{j \in R} \tilde{T}_{j}$ \{select the next comp. to fail\}
8: $T_{i_{1}} \leftarrow \tilde{T}_{i_{1}}$ \{store the next failure times \}
9: for $r \in\{2, \ldots, n\}$ do
10: $\{$ Step $r\}$
11: $R \leftarrow R \backslash\left\{i_{r-1}\right\}$ \{update the set of non-failed components $\}$
12: \quad for $j \in B_{i_{r-1}} \cap R$ do
13: $\left.\quad \operatorname{draw} \tilde{T}_{j}: \log \left(U_{j}\right)+\int_{T_{i_{r-1}}}^{t_{j}} \lambda(s) \exp \left(\beta Z(s)+\alpha \sum_{k \in B_{j}} C_{k}(s) Y_{k}(s)\right)\right) \mathrm{d} s=0$
14: $\quad \begin{aligned} & \text { end for } \\ & \left.i_{r} \leftarrow \operatorname{argmin}_{j \in R} \tilde{T}_{j} \text { \{select the next comp. to fail }\right\}\end{aligned}$
16: $\quad T_{i_{r}} \leftarrow \tilde{T}_{i_{r}}$ \{store the next failure times $\}$
17: end for

Simulation Algorithm

Require: $n, a, b, \alpha, \beta, Z_{1}(\cdot), \ldots, Z_{n}(\cdot)$
$1: T \leftarrow \operatorname{Vector}($ length $=n$)
2: $\tilde{T} \leftarrow \operatorname{Vector}($ length $=n$)
3: draw U_{1}, \ldots, U_{n} i.i.d. from the uniform distribution over $[0 ; 1]$
4: $\{$ Step 1$\}$
5: set $R \leftarrow\{1, \ldots, n\}$ \{set of unfailed components $\}$
6: draw $\tilde{T}_{1}, \ldots, \tilde{T}_{n}: \log \left(U_{i}\right)+\int_{0}^{t_{i}} \lambda(s) \exp \left(\beta^{\prime} Z_{i}(s)\right) \mathrm{d} s=0$
7: $i_{1} \leftarrow \operatorname{argmin}_{j \in R} \tilde{T}_{j}$ \{select the next comp. to fail\}
8: $T_{i_{1}} \leftarrow \tilde{T}_{i_{1}}$ \{store the next failure times \}
9: for $r \in\{2, \ldots, n\}$ do
10: $\{$ Step r \}
11: $R \leftarrow R \backslash\left\{i_{r-1}\right\}$ \{update the set of non-failed components \}
12: \quad for $j \in B_{i_{r-1}} \cap R$ do
13: $\left.\quad \operatorname{draw} \tilde{T}_{j}: \log \left(U_{j}\right)+\int_{T_{i_{r-1}}}^{t_{j}} \lambda(s) \exp \left(\beta Z(s)+\alpha \sum_{k \in B_{j}} C_{k}(s) Y_{k}(s)\right)\right) \mathrm{d} s=0$
14: \quad end for $\quad i_{r} \leftarrow \operatorname{argmin}_{j \in R} \tilde{T}_{j}$ \{select the next comp. to fail $\}$
16: $\quad T_{i_{r}} \leftarrow \tilde{T}_{i_{r}}$ \{store the next failure times $\}$
17: end for
return T_{1}, \ldots, T_{n}

Available data

- Inspection times, $\tau_{1}<\cdots<\tau_{m}$, are the same for all components.
- The available data at each inspection time is a binary information on whether the component is failed or not ($Y_{i}=0$ or $Y_{i}=1$).
- data are interval-censored.
- covariates C_{1}, \ldots, C_{n} and Z_{1}, \ldots, Z_{n} are observed continuously.

First case: Failure

- \mathcal{N}_{1} : the set of all failed components at the last inspection time τ_{m}
- For component i, let $j_{i}=\min \left\{j ; Y_{i}\left(\tau_{j}\right)=1\right\}$ be the inspection time s.t. the failure is observed for the first time on the i-th component
- $\mathcal{N}_{1, r}=\left\{i \in \mathcal{N}_{1} ; j_{i}=r\right\}$.
- Failure appears between $\tau_{j i-1}$ and $\tau_{j i}$.
- The probability of this event is given by:

$$
\mathbb{P}\left[\tau_{j_{i}-1}<T_{i} \leq \tau_{j_{i}} \mid \mathcal{H}_{\tau_{j_{i}}^{-}}\right]=S_{i}\left(\tau_{j_{i}-1} \mid \mathcal{H}_{\tau_{j_{i}-1}^{-}}\right)-S_{i}\left(\tau_{j_{i}} \mid \mathcal{H}_{\tau_{j_{i}}^{--}}\right) .
$$

Second case: No failure

- \mathcal{N}_{0} : the set of all unfailed components at the last inspection time τ_{m}.
- We have $\mathbb{P}\left[T_{i}>\tau_{m} \mid \mathcal{H}_{\tau_{m}^{-}}\right]=S_{i}\left(\tau_{m} \mid \mathcal{H}_{\tau_{m}^{-}}\right)$.
- Notice that the subset \mathcal{N}_{0} can be empty, but it cannot be the case for \mathcal{N}_{1}.

Pseudo-likelihood

- If $\alpha \neq 0$, the likelihood function can be difficulty written
- The pseudo-likelihood function (ignoring the dependency), $p L$ is given by:

$$
\begin{aligned}
& p L\left(\alpha, \beta, a, b \mid \mathcal{H}_{\tau_{m}^{-}}\right)=\prod_{i \in \mathcal{N}_{0}} s_{i}\left(\tau_{m} \mid \mathcal{H}_{\tau_{m}^{-}}\right) \prod_{i \in \mathcal{N}_{1}}\left[s_{i}\left(\tau_{j_{i}-1} \mid \mathcal{H}_{\tau_{j_{i}}^{-}}\right)-s_{i}\left(\tau_{\left.\left.j_{i} \mid \mathcal{H}_{\tau_{j_{i}}^{-}}\right)\right]}\right.\right. \\
&=\prod_{i \in \mathcal{N}_{0}} s_{i}\left(\tau_{m} \mid \mathcal{H}_{\tau_{m}^{-}}\right) \prod_{r=1}^{m} \prod_{i \in \mathcal{N}_{1, r}}\left[s_{i}\left(\tau_{r-1} \mid \mathcal{H}_{\tau_{r-1}^{-}}\right)-s_{i}\left(\tau_{r} \mid \mathcal{H}_{\tau_{r}^{-}}\right)\right],
\end{aligned}
$$

- It could rather be useful to consider the pseudo-log-likelihood function $p \ell$ which is given by:

$$
p \ell\left(\alpha, \beta, a, b \mid \mathcal{H}_{\tau_{m}^{-}}\right)=\sum_{i \in \mathcal{N}_{0}} \log \left[s_{i}\left(\tau_{m} \mid \mathcal{H}_{\tau_{m}^{-}}\right)\right]+\sum_{r=1}^{m} \sum_{i \in \mathcal{N}_{1}, r} \log \left[s_{i}\left(\tau_{r-1} \mid \mathcal{H}_{\tau_{r-1}^{-}}\right)-s_{i}\left(\tau_{r} \mid \mathcal{H}_{\tau_{r}^{-}}\right)\right]
$$

Maximum Pseudo-Likelihood Estimator

- Maximum Pseudo-Likelihood Estimator of the parameters cannot be computed neither in a closed-form, nor numerically.
- hazard functions depend on binary stochastic processes Y_{1}, \ldots, Y_{n} which are only known at inspection times.
- to compute the survival at time t, it is required to the value of the hazard function at any time between 0 and t.
- \Rightarrow use of SEM algorithm

SEM Algorithm: Step 0

Step 0: parameter initialization.

For the covariates, set $\widehat{\alpha}^{(0)}=0$ and $\widehat{\beta}^{(0)}=0$ (no effect).

Parameters a and b can be thus estimated by maximizing the log-likelihood (since components are independent): $\hat{a}^{(0)}$ and $\widehat{b}^{(0)}$.

SEM Algorithm: Step k

Step k : time-to-failures simulation and updating estimation.

SEM Algorithm: Step k

Step k : time-to-failures simulation and updating estimation.
(1) simulate T_{1}, \ldots, T_{n} using Sim. Algo. and considering the parameters $\widehat{\alpha}^{(k-1)}, \widehat{\beta}^{(k-1)}, \widehat{a}^{(k-1)}$ and $\widehat{b}^{(k-1)}$; pseudo-log-likelihood function:

SEM Algorithm: Step k

Step k : time-to-failures simulation and updating estimation.
(1) simulate T_{1}, \ldots, T_{n} using Sim. Algo. and considering the parameters $\widehat{\alpha}^{(k-1)}, \widehat{\beta}^{(k-1)}, \widehat{a}^{(k-1)}$ and $\widehat{b}^{(k-1)}$;
(2) update the estimation by maximizing numerically the pseudo-log-likelihood function: $\widehat{\beta}^{(k)}, \widehat{\alpha}^{(k)}, \widehat{a}^{(k)}$ and $\widehat{b}^{(k)}$.

The final estimator is then given by considering the ergodic
average of the estimators:

This algorithm requires to simulate the missing data, which are

SEM Algorithm: Step k

Step k : time-to-failures simulation and updating estimation.
(1) simulate T_{1}, \ldots, T_{n} using Sim. Algo. and considering the parameters $\widehat{\alpha}^{(k-1)}, \widehat{\beta}^{(k-1)}, \widehat{a}^{(k-1)}$ and $\widehat{b}^{(k-1)}$;
(2) update the estimation by maximizing numerically the pseudo-log-likelihood function: $\widehat{\beta}^{(k)}, \widehat{\alpha}^{(k)}, \widehat{a}^{(k)}$ and $\widehat{b}^{(k)}$.
The final estimator is then given by considering the ergodic average of the estimators:

$$
\widehat{\alpha}=\frac{1}{K} \sum_{k=1}^{K} \widehat{\alpha}^{(k)}, \quad \widehat{\beta}=\frac{1}{K} \sum_{k=1}^{K} \widehat{\beta}^{(k)}, \quad \widehat{a}=\frac{1}{K} \sum_{k=1}^{K} \widehat{\mathrm{a}}^{(k)} \quad \text { and } \quad \widehat{b}=\frac{1}{K} \sum_{k=1}^{K} \widehat{b}^{(k)} .
$$

SEM Algorithm: Step k

Step k : time-to-failures simulation and updating estimation.
(1) simulate T_{1}, \ldots, T_{n} using Sim. Algo. and considering the parameters $\widehat{\alpha}^{(k-1)}, \widehat{\beta}^{(k-1)}, \widehat{a}^{(k-1)}$ and $\widehat{b}^{(k-1)}$;
(2) update the estimation by maximizing numerically the pseudo-log-likelihood function: $\widehat{\beta}^{(k)}, \widehat{\alpha}^{(k)}, \widehat{a}^{(k)}$ and $\widehat{b}^{(k)}$.
The final estimator is then given by considering the ergodic average of the estimators:
$\widehat{\alpha}=\frac{1}{K} \sum_{k=1}^{K} \widehat{\alpha}^{(k)}, \quad \widehat{\beta}=\frac{1}{K} \sum_{k=1}^{K} \widehat{\beta}^{(k)}, \quad \widehat{a}=\frac{1}{K} \sum_{k=1}^{K} \widehat{\mathrm{a}}^{(k)} \quad$ and $\quad \widehat{b}=\frac{1}{K} \sum_{k=1}^{K} \widehat{b}^{(k)}$.
This algorithm requires to simulate the missing data, which are the times-to-failure of the components.

Simulation Algorithm based on observations 1

Require: $n, a, b, \alpha, \beta, Z_{1}(\cdot), \ldots, Z_{n}(\cdot), \mathbf{D}_{o b s}$
1: $T \leftarrow$ Vector(length $=n$)
2: $\tilde{T} \leftarrow \operatorname{Vector}($ length $=n$)
3: draw U_{1}, \ldots, U_{n} i.i.d. from the uniform distribution over $[0 ; 1]$
4: $\left\{\right.$ Interval $\left.l_{1}\right\}$
5: $R \leftarrow I_{1}$ \{set of unfailed components in I_{1} \}
6: for $j \in l_{1}$ do
7: $\quad \operatorname{draw} \tilde{T}_{j}: \log \left(U_{j}\right)+\int_{0}^{t_{j}} \lambda(s) \exp \left(\beta^{\prime} Z_{j}(s)\right) \mathrm{d} s=0$
8: end for
9: $h \leftarrow \operatorname{argmin}_{j \in R} \tilde{T}_{j}$ \{select the next comp. to fail\}
10: $T_{h} \leftarrow \tilde{T}_{h}$ \{store the next failure times \}
11: if $n_{1}>1$ then
12: for $r \in\left\{2, \ldots, n_{1}\right\}$ do
13: $R \leftarrow R \backslash\{h\}$ \{update the set of non-failed components in I_{1} \}
14: \quad for $j \in B_{h} \cap R$ do
15: \quad draw $\left.\tilde{T}_{j}: \log \left(U_{j}\right)+\int_{T_{h}}^{t_{j}} \lambda(s) \exp \left(\beta Z(s)+\alpha \sum_{k \in B_{j}} C_{k}(s) Y_{k}(s)\right)\right) \mathrm{d} s=0$
16: end for
17: $h \leftarrow \operatorname{argmin}_{j \in R} \tilde{T}_{j}$ \{select the next comp. to fail\}
18: $\quad T_{h} \leftarrow \tilde{T}_{h}$ \{store the next failure times
19: end for
20: end if

Simulation Algorithm based on observations 2

```
for \(i \in\{2, \ldots, m\}\) do
2: \(\quad\left\{\right.\) Interval \(\left.I_{i}\right\}\)
3: \(\quad R \leftarrow I_{i}\)
4: if \(n_{i}>0\) then
5: \(\quad\) for \(j \in I_{1}\) do
6: \(\left.\quad \operatorname{draw} \tilde{T}_{j}: \log \left(U_{j}\right)+\int_{\tau_{i-1}}^{t_{j}} \lambda(s) \exp \left(\beta Z(s)+\alpha \sum_{k \in B_{j}} C_{k}(s) Y_{k}(s)\right)\right) \mathrm{d} s=0\)
7: end for
8: \(\quad h \leftarrow \operatorname{argmin}_{j \in R} \tilde{T}_{j}\) \{select the next comp. to fail\}
9: \(\quad T_{h} \leftarrow \tilde{T}_{h}\) \{store the next failure times \(\}\)
10: if \(n_{1}>1\) then
11: \(\quad\) for \(r \in\left\{2, \ldots, n_{1}\right\}\) do
                    \(R \leftarrow R \backslash\{h\}\) \{update the set of non-failed components in \(\left.I_{i}\right\}\)
                    for \(j \in B_{h} \cap R\) do
                    draw \(\left.\tilde{T}_{j}: \log \left(U_{j}\right)+\int_{T_{h}}^{t_{j}} \lambda(s) \exp \left(\beta Z(s)+\alpha \sum_{k \in B_{j}} C_{k}(s) Y_{k}(s)\right)\right) \mathrm{d} s=0\)
15
17:
\(18:\)
1 . end for
```


Numerical Illustration

- inspection times are periodic, say $\tau_{j}=j \delta$ for some $\delta>0$.
- $n=20 \times 20$ components.
- simulations with $a=2, b=3, \alpha=1, K=100$ and $\delta=0.1$.
- no covariate/no constraint:

$$
\forall t \geq 0, \quad \lambda_{i, j}\left(t \mid \mathcal{H}_{t^{-}}\right)=\lambda(t) \exp \left(\alpha \sum_{\left(i^{\prime}, j^{\prime}\right) \in B_{i, j}} Y_{i^{\prime}, j^{\prime}}(t)\right)
$$

Numerical Illustration

- inspection times are periodic, say $\tau_{j}=j \delta$ for some $\delta>0$.
- $n=20 \times 20$ components.
- simulations with $a=2, b=3, \alpha=1, K=100$ and $\delta=0.1$.
- no covariate/no constraint:

$$
\forall t \geq 0, \quad \lambda_{i, j}\left(t \mid \mathcal{H}_{t^{-}}\right)=\lambda(t) \exp \left(\alpha \sum_{\left(i^{\prime}, j^{\prime}\right) \in B_{i, j}} Y_{i^{\prime}, j^{\prime}}(t)\right)
$$

\hat{a}	\hat{b}	$\hat{\alpha}$
2.206064	2.645539	1.019503

Future Work

- Constraint exerced at the center of the grid (e.g. $n=2 p+1$) and diffused isotropically from the center as follows:

$$
C_{i, j}(t)=\exp \left(-\frac{1}{\sigma^{2}}\left((i-p-1)^{2}+(j-p-1)^{2}\right)\right) .
$$

- Application on real data

